The statistical properties of the solar soft X-ray fluence during 1997–2008

被引:0
|
作者
Yulin Chen
Guiming Le
Yangping Lu
Minhao Chen
Liuguan Ding
Zhiqiang Yin
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
[2] National Center for Space Weather,Key Laboratory of Space Weather
[3] China Meteorological Administration,National Astronomical Observatories
[4] Chinese Academy of Sciences,undefined
来源
关键词
Solar active region; Solar flares; SXR flare fluence;
D O I
暂无
中图分类号
学科分类号
摘要
The statistical properties of the solar soft X-ray (SXR) flare fluence, i.e. the time integral of SXR flux of a flare, FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document}, and sum of the FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} of all flares produced by a solar active region (AR), FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document}, during 1997–2008 have been investigated. The results show that FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} has moderate correlation with the area of the associated AR, while the correlation between FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the largest area of the associated AR is also moderate. The total number of ARs that can produce at least one SXR flare during 1997–2008, Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{t}$\end{document}, is 1408. The sum of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} produced by 1408 ARs, ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}, is 89 585.81 (erg s cm−2) and the average value of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is 63.6 (erg s cm−2). 34 ARs (FAR≥500ergscm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}\ge 500\ \mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}$\end{document}) contributed 55.72 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 111 ARs (100(ergscm−2)≤FAR<500(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2})\le F_{\mathit{AR}}<500\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 24.33 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 437 ARs (10(ergscm−2)≤FAR<100(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2} )\le F_{\mathit{AR}}< 100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 17.48 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The rest 826 ARs only contributed 2.52 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The number of ARs decreases dramatically with FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the distribution function of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is N(FAR)=2840e−0.1286FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N(F_{\mathit{AR}})=2840e^{-0.1286F_{\mathit{AR}}}$\end{document}.
引用
下载
收藏
相关论文
共 50 条
  • [31] ON THE FREQUENCY DISTRIBUTIONS OF SOLAR SOFT X-RAY FLARES
    Gan, W. Q.
    Li, Y. P.
    Feng, L.
    UNDERSTANDING SOLAR ACTIVITY: ADVANCES AND CHALLENGES, 2012, 55 : 239 - 243
  • [32] Goldhelox. A soft X-ray solar telescope
    1600, Academic Press Inc, San Diego, CA, USA (05):
  • [33] SOLAR CYCLE VARIATION OF SOFT X-RAY EMISSION
    KREPLIN, RW
    REPORT OF NRL PROGRESS, 1970, : 8 - &
  • [34] SOLAR CYCLE VARIATION OF SOFT X-RAY EMISSION
    KREPLIN, RW
    ANNALES DE GEOPHYSIQUE, 1970, 26 (02): : 567 - &
  • [35] Soft X-ray Solar polarimeter-spectrometer
    Steslicki, Marek
    Sylwester, Janusz
    Siarkowski, Marek
    Kowalinski, Miroslaw
    Plocieniak, Stefan
    Bakala, Jaroslaw
    Szaforz, Zaneta
    Kuzin, Sergey
    19TH POLISH-SLOVAK-CZECH OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2014, 9441
  • [36] SOFT X-RAY EMITTING REGIONS IN SOLAR CORONA
    LANDINI, M
    FOSSI, BCM
    SOLAR PHYSICS, 1971, 17 (02) : 379 - &
  • [37] Statistics of fluctuations in the solar soft X-ray emission
    UeNo, S
    Mineshige, S
    Negoro, H
    Shibata, K
    Hudson, HS
    ASTROPHYSICAL JOURNAL, 1997, 484 (02): : 920 - 926
  • [38] High resolution solar soft X-ray spectrometer
    Zhang Fei
    Wang Huan-Yu
    Peng Wen-Xi
    Liang Xiao-Hua
    Zhang Chun-Lei
    Cao Xue-Lei
    Jiang Wei-Chun
    Zhang Jia-Yu
    Cui Xing-Zhu
    CHINESE PHYSICS C, 2012, 36 (02) : 146 - 150
  • [39] Solar flare Doppler blueshifted soft X-ray emission and hard X-ray bursts
    Rilee, ML
    Doschek, GA
    ASTROPHYSICAL JOURNAL, 2001, 554 (01): : 464 - 473
  • [40] SOFT X-RAY ENHANCEMENT DURING FLARES
    DESHPANDE, SD
    TANDON, JN
    SOLAR PHYSICS, 1970, 13 (02) : 462 - +