The statistical properties of the solar soft X-ray fluence during 1997–2008

被引:0
|
作者
Yulin Chen
Guiming Le
Yangping Lu
Minhao Chen
Liuguan Ding
Zhiqiang Yin
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
[2] National Center for Space Weather,Key Laboratory of Space Weather
[3] China Meteorological Administration,National Astronomical Observatories
[4] Chinese Academy of Sciences,undefined
来源
关键词
Solar active region; Solar flares; SXR flare fluence;
D O I
暂无
中图分类号
学科分类号
摘要
The statistical properties of the solar soft X-ray (SXR) flare fluence, i.e. the time integral of SXR flux of a flare, FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document}, and sum of the FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} of all flares produced by a solar active region (AR), FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document}, during 1997–2008 have been investigated. The results show that FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} has moderate correlation with the area of the associated AR, while the correlation between FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the largest area of the associated AR is also moderate. The total number of ARs that can produce at least one SXR flare during 1997–2008, Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{t}$\end{document}, is 1408. The sum of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} produced by 1408 ARs, ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}, is 89 585.81 (erg s cm−2) and the average value of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is 63.6 (erg s cm−2). 34 ARs (FAR≥500ergscm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}\ge 500\ \mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}$\end{document}) contributed 55.72 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 111 ARs (100(ergscm−2)≤FAR<500(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2})\le F_{\mathit{AR}}<500\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 24.33 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 437 ARs (10(ergscm−2)≤FAR<100(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2} )\le F_{\mathit{AR}}< 100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 17.48 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The rest 826 ARs only contributed 2.52 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The number of ARs decreases dramatically with FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the distribution function of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is N(FAR)=2840e−0.1286FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N(F_{\mathit{AR}})=2840e^{-0.1286F_{\mathit{AR}}}$\end{document}.
引用
下载
收藏
相关论文
共 50 条
  • [21] Soft X-Ray Pulsations in Solar Flares
    P. J. A. Simões
    H. S. Hudson
    L. Fletcher
    Solar Physics, 2015, 290 : 3625 - 3639
  • [22] Soft X-ray properties of LINERs
    Komossa, S
    Böhringer, H
    Huchra, J
    ASTRONOMISCHE NACHRICHTEN, 1999, 320 (4-5) : 301 - 301
  • [23] Study of solar X-ray jets observed by the Yohkoh Soft X-ray Telescope
    Shimojo, M
    Shibata, K
    OBSERVATIONAL PLASMA ASTROPHYSICS: FIVE YEARS OF YOHKOH AND BEYOND, 1998, 229 : 357 - 360
  • [24] MORPHOLOGICAL AND STATISTICAL PROPERTIES OF SOLAR X-RAY EVENTS WITH LONG DECAY TIMES
    KAHLER, S
    ASTROPHYSICAL JOURNAL, 1977, 214 (03): : 891 - &
  • [25] Soft X-ray heating of the solar chromosphere during the gradual phase of two solar flares
    Berlicki, A. (arkadiusz.berlicki@obspm.fr), 1600, EDP Sciences (420):
  • [26] Soft X-ray heating of the solar chromosphere during the gradual phase of two solar flares
    Berlicki, A
    Heinzel, P
    ASTRONOMY & ASTROPHYSICS, 2004, 420 (01): : 319 - 331
  • [27] Solar flares with similar soft but different hard X-ray emissions:case and statistical studies
    Ivan N.Sharykin
    Alexei B.Struminsky
    Ivan V.Zimovets
    Wei-Qun Gan
    Research in Astronomy and Astrophysics, 2016, 16 (01) : 41 - 52
  • [28] Statistical studies of solar H alpha brightening events and their relation to soft X-ray events
    Yatini, CY
    Suematsu, Y
    MAGNETODYNAMIC PHENOMENA IN THE SOLAR ATMOSPHERE: PROTOTYPES OF STELLAR MAGNETIC ACTIVITY, 1996, : 453 - 454
  • [29] Solar flares with similar soft but different hard X-ray emissions: case and statistical studies
    Sharykin, Ivan N.
    Struminsky, Alexei B.
    Zimovets, Ivan V.
    Gan, Wei-Qun
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2016, 16 (01)
  • [30] High resolution solar soft X-ray spectrometer
    张飞
    王焕玉
    彭文溪
    梁晓华
    张春雷
    曹学蕾
    姜维春
    张家宇
    崔兴柱
    Chinese Physics C, 2012, 36 (02) : 146 - 150