The statistical properties of the solar soft X-ray fluence during 1997–2008

被引:0
|
作者
Yulin Chen
Guiming Le
Yangping Lu
Minhao Chen
Liuguan Ding
Zhiqiang Yin
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
[2] National Center for Space Weather,Key Laboratory of Space Weather
[3] China Meteorological Administration,National Astronomical Observatories
[4] Chinese Academy of Sciences,undefined
来源
关键词
Solar active region; Solar flares; SXR flare fluence;
D O I
暂无
中图分类号
学科分类号
摘要
The statistical properties of the solar soft X-ray (SXR) flare fluence, i.e. the time integral of SXR flux of a flare, FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document}, and sum of the FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} of all flares produced by a solar active region (AR), FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document}, during 1997–2008 have been investigated. The results show that FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} has moderate correlation with the area of the associated AR, while the correlation between FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the largest area of the associated AR is also moderate. The total number of ARs that can produce at least one SXR flare during 1997–2008, Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{t}$\end{document}, is 1408. The sum of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} produced by 1408 ARs, ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}, is 89 585.81 (erg s cm−2) and the average value of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is 63.6 (erg s cm−2). 34 ARs (FAR≥500ergscm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}\ge 500\ \mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}$\end{document}) contributed 55.72 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 111 ARs (100(ergscm−2)≤FAR<500(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2})\le F_{\mathit{AR}}<500\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 24.33 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 437 ARs (10(ergscm−2)≤FAR<100(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2} )\le F_{\mathit{AR}}< 100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 17.48 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The rest 826 ARs only contributed 2.52 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The number of ARs decreases dramatically with FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the distribution function of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is N(FAR)=2840e−0.1286FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N(F_{\mathit{AR}})=2840e^{-0.1286F_{\mathit{AR}}}$\end{document}.
引用
下载
收藏
相关论文
共 50 条
  • [1] The statistical properties of the solar soft X-ray fluence during 1997-2008
    Chen, Yulin
    Le, Guiming
    Lu, Yangping
    Chen, Minhao
    Ding, Liuguan
    Yin, Zhiqiang
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (01) : 1 - 10
  • [2] Statistical properties of soft X-ray solar flares
    Lepreti, F
    Carbone, V
    Veltri, P
    Giuliani, P
    SOLAR WIND TEN, PROCEEDINGS, 2003, 679 : 774 - 777
  • [3] Statistical Properties of Soft X-Ray Emission of Solar Flares
    Sadykov, Viacheslav M.
    Kosovichev, Alexander G.
    Kitiashvili, Irina N.
    Frolov, Alexander
    ASTROPHYSICAL JOURNAL, 2019, 874 (01):
  • [4] Statistical study of solar X-ray jets observed with the yohkoh soft X-ray telescope
    Shimojo, M
    Hashimoto, T
    Shibata, K
    Hirayama, T
    Harvey, KL
    MAGNETODYNAMIC PHENOMENA IN THE SOLAR ATMOSPHERE: PROTOTYPES OF STELLAR MAGNETIC ACTIVITY, 1996, : 449 - 450
  • [5] Statistical study of solar X-ray jets observed with the Yohkoh soft X-ray telescope
    Shimojo, M
    Hashimoto, S
    Shibata, K
    Hirayama, T
    Hudson, HS
    Acton, LW
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1996, 48 (01) : 123 - 136
  • [6] Statistical study of solar X-ray jets observed with the Yohkoh soft X-ray Telescope
    Department of Physics, School of Science, Tokai University, Hiratsuka, Kanagawa
    259-12, Japan
    不详
    181, Japan
    不详
    HI, United States
    不详
    MT, United States
    Publ. Astron. Soc. Jpn., 1 (123-136):
  • [7] Statistical analysis of soft X-ray solar flares during solar cycles 22, 23, and 24
    Bo Xiong
    Ting Wang
    Xiaolin Li
    Yunxing Yin
    Astrophysics and Space Science, 2021, 366
  • [8] Statistical analysis of Soft X-ray solar flares during solar cycles 21, 22 and 23
    Joshi, Navin Chandra
    Bankoti, Neeraj Singh
    Pande, Seema
    Pande, Bimal
    Uddin, Wahab
    Pandey, Kavita
    NEW ASTRONOMY, 2010, 15 (06) : 538 - 546
  • [9] Statistical analysis of soft X-ray solar flares during solar cycles 22, 23, and 24
    Xiong, Bo
    Wang, Ting
    Li, Xiaolin
    Yin, Yunxing
    ASTROPHYSICS AND SPACE SCIENCE, 2021, 366 (01)
  • [10] Statistical analysis of soft x-ray flares during the 23rd solar cycle
    Tang, Y. Q.
    Le, G. M.
    Proceedings of the 29th International Cosmic Ray Conference Vol 1: SH1 and SH2, 2005, : 5 - 8