Non-convex nested Benders decomposition

被引:0
|
作者
Christian Füllner
Steffen Rebennack
机构
[1] Karlsruhe Institute of Technology (KIT),Institute for Operations Research (IOR), Stochastic Optimization (SOP)
来源
Mathematical Programming | 2022年 / 196卷
关键词
Nested Benders decomposition; Mixed-integer nonlinear programming (MINLP); Global optimization; Non-convexities; Non-convex value functions; 90C26; 90C11; 49M27;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
引用
收藏
页码:987 / 1024
页数:37
相关论文
共 50 条
  • [31] Algebraic signatures of convex and non-convex codes
    Curto, Carina
    Gross, Elizabeth
    Jeffries, Jack
    Morrison, Katherine
    Rosen, Zvi
    Shiu, Anne
    Youngs, Nora
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (09) : 3919 - 3940
  • [32] A Study on GMLVQ Convex and Non-convex Regularization
    Nova, David
    Estevez, Pablo A.
    ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, WSOM 2016, 2016, 428 : 305 - 314
  • [33] NON-CONVEX MINIMIZATION PROBLEMS
    EKELAND, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) : 443 - 474
  • [34] A Non-Convex Zones Identification Method for Non-Linear Non-Convex Constraints Applied to LP
    Huerta Balcazar, Emanuel
    Cerda, Jaime
    Ramirez, Salvador
    2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,
  • [35] Evolution by Non-Convex Functionals
    Elbau, Peter
    Grasmair, Markus
    Lenzen, Frank
    Scherzer, Otmar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (04) : 489 - 517
  • [36] Non-convex scenario optimization
    Garatti, Simone
    Campi, Marco C.
    MATHEMATICAL PROGRAMMING, 2025, 209 (1-2) : 557 - 608
  • [37] Non-convex sparse regularisation
    Grasmair, Markus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 19 - 28
  • [38] AN IRREDUCIBLE NON-CONVEX REGION
    OLLERENSHAW, K
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (02): : 194 - 200
  • [39] Non-Convex Distributed Optimization
    Tatarenko, Tatiana
    Touri, Behrouz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3744 - 3757
  • [40] Non-Convex Optimization: A Review
    Trehan, Dhruv
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 418 - 423