Non-convex nested Benders decomposition

被引:0
|
作者
Christian Füllner
Steffen Rebennack
机构
[1] Karlsruhe Institute of Technology (KIT),Institute for Operations Research (IOR), Stochastic Optimization (SOP)
来源
Mathematical Programming | 2022年 / 196卷
关键词
Nested Benders decomposition; Mixed-integer nonlinear programming (MINLP); Global optimization; Non-convexities; Non-convex value functions; 90C26; 90C11; 49M27;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
引用
收藏
页码:987 / 1024
页数:37
相关论文
共 50 条
  • [41] Non-convex Representations of Graphs
    Di Battista, Giuseppe
    Frati, Fabrizio
    Patrignani, Maurizio
    GRAPH DRAWING, 2009, 5417 : 390 - 395
  • [42] NESTED DECOMPOSITION OF MULTISTAGE CONVEX PROGRAMS
    ONEILL, RP
    SIAM JOURNAL ON CONTROL, 1976, 14 (03): : 409 - 418
  • [43] Non-Convex Multipartite Ferromagnets
    Giuseppe Genovese
    Daniele Tantari
    Journal of Statistical Physics, 2016, 163 : 492 - 513
  • [44] Minimal non-convex words
    Provencal, Xavier
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (27) : 3002 - 3009
  • [45] Column enumeration based decomposition techniques for a class of non-convex MINLP problems
    Rebennack, Steffen
    Kallrath, Josef
    Pardalos, Panos M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) : 277 - 297
  • [46] COVARIOGRAM OF NON-CONVEX SETS
    Benassi, Carlo
    Bianchi, Gabriele
    D'Ercole, Giuliana
    MATHEMATIKA, 2010, 56 (02) : 267 - 284
  • [47] Non-convex CMC spheres
    Ma, Shiguang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1180 - 1195
  • [48] Column enumeration based decomposition techniques for a class of non-convex MINLP problems
    Steffen Rebennack
    Josef Kallrath
    Panos M. Pardalos
    Journal of Global Optimization, 2009, 43 : 277 - 297
  • [49] Non-Convex Multipartite Ferromagnets
    Genovese, Giuseppe
    Tantari, Daniele
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (03) : 492 - 513
  • [50] DUALITY IN NON-CONVEX OPTIMIZATION
    TOLAND, JF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 399 - 415