Evolution by Non-Convex Functionals

被引:1
|
作者
Elbau, Peter [2 ]
Grasmair, Markus [1 ]
Lenzen, Frank [3 ]
Scherzer, Otmar [1 ]
机构
[1] Univ Vienna, Computat Sci Ctr, A-1090 Vienna, Austria
[2] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
[3] Heidelberg Univ, Heidelberg Collaboratory Image Proc HCI, D-6900 Heidelberg, Germany
基金
奥地利科学基金会;
关键词
Geometric partial differential equations; Mean curvature motion; Non-convex bound variation; Non-convex functionals; Non-convex semi-group theory; Relaxation;
D O I
10.1080/01630563.2010.485853
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a semi-group solution concept for flows that are generated by generalized minimizers of non-convex energy functionals. We use relaxation and convexification to define these generalized minimizers. The main part of this work consists in exemplary validation of the solution concept for a non-convex energy functional. For rotationally invariant initial data it is compared with the solution of the mean curvature flow equation. The basic example relates the mean curvature flow equation with a sequence of iterative minimizers of a family of non-convex energy functionals. Together with the numerical evidence this corroborates the claim that the non-convex semi-group solution concept defines, in general, a solution of the mean curvature equation.
引用
收藏
页码:489 / 517
页数:29
相关论文
共 50 条
  • [1] ON A CLASS OF NON-CONVEX FUNCTIONALS AND THEIR APPLICATIONS
    TAHRAOUI, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 37 - 52
  • [2] Singular perturbation of a class of non-convex functionals
    Yu, XW
    Li, ZP
    Ying, LA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) : 1129 - 1152
  • [3] Reconstruction of noisy signals by minimization of non-convex functionals
    Mederos, Boris
    Mollineda, Ramon A.
    Camarena, Julian Antolin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 355 - 376
  • [4] LOCAL BOUNDEDNESS OF VECTORIAL MINIMIZERS OF NON-CONVEX FUNCTIONALS
    Cupini, G.
    Focardi, M.
    Leonetti, F.
    Mascolo, E.
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2018, 9 : 20 - 40
  • [5] Radially symmetric critical points of non-convex functionals
    Kroemer, Stefan
    Kielhoefer, Hansjoerg
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 : 1261 - 1280
  • [6] Non-convex, non-local functionals converging to the total variation
    Brezis, Haim
    Hoai-Minh Nguyen
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 24 - 27
  • [7] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Kristian Bredies
    Dirk A. Lorenz
    Stefan Reiterer
    Journal of Optimization Theory and Applications, 2015, 165 : 78 - 112
  • [8] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Bredies, Kristian
    Lorenz, Dirk A.
    Reiterer, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) : 78 - 112
  • [9] Γ-convergence of non-local, non-convex functionals in one dimension
    Brezis, Haim
    Hoai-Minh Nguyen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (07)
  • [10] Non-local, non-convex functionals converging to Sobolev norms
    Brezis, Haim
    Hoai-Minh Nguyen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 191 (191)