Non-convex, non-local functionals converging to the total variation

被引:9
|
作者
Brezis, Haim [1 ,2 ,3 ]
Hoai-Minh Nguyen [4 ]
机构
[1] Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Univ Paris 06, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[4] Ecole Polytech Fed Lausanne, SB MATHAA CAMA, Stn 8, CH-1015 Lausanne, Switzerland
关键词
SOBOLEV SPACES; GAMMA-CONVERGENCE; NORMS;
D O I
10.1016/j.crma.2016.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present new results concerning the approximation of the total variation, integral(Omega)vertical bar del u vertical bar, of a function u by non-local, non-convex functionals of the form Lambda delta(u) = integral(Omega)integral(Omega)delta phi(vertical bar u(x) - u(y)vertical bar/delta)/vertical bar x-y vertical bar(d+1)dxdy, as delta -> 0, where Omega is a domain in R-d and phi : [0, +infinity) > [0, +infinity) is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate, and numerous problems remain open. The original motivation of our work comes from Image Processing. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:24 / 27
页数:4
相关论文
共 50 条
  • [1] Non-local, non-convex functionals converging to Sobolev norms
    Brezis, Haim
    Hoai-Minh Nguyen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 191 (191)
  • [2] Γ-convergence of non-local, non-convex functionals in one dimension
    Brezis, Haim
    Hoai-Minh Nguyen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (07)
  • [3] LOCAL BOUNDEDNESS OF VECTORIAL MINIMIZERS OF NON-CONVEX FUNCTIONALS
    Cupini, G.
    Focardi, M.
    Leonetti, F.
    Mascolo, E.
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2018, 9 : 20 - 40
  • [4] Non-local Functionals Related to the Total Variation and Connections with Image Processing
    Brezis H.
    Nguyen H.-M.
    Annals of PDE, 2018, 4 (1)
  • [5] Evolution by Non-Convex Functionals
    Elbau, Peter
    Grasmair, Markus
    Lenzen, Frank
    Scherzer, Otmar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (04) : 489 - 517
  • [6] Total Variation Denoising With Non-Convex Regularizers
    Zou, Jian
    Shen, Marui
    Zhang, Ya
    Li, Haifeng
    Liu, Guoqi
    Ding, Shuxue
    IEEE ACCESS, 2019, 7 : 4422 - 4431
  • [7] Non-convex non-local reactive flows for saliency detection and segmentation
    Galiano, G.
    Ramirez, I
    Schiavi, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 377 (377)
  • [8] Non-convex Total Variation Regularization for Convex Denoising of Signals
    Selesnick, Ivan
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 825 - 841
  • [9] Non-convex Total Variation Regularization for Convex Denoising of Signals
    Ivan Selesnick
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Journal of Mathematical Imaging and Vision, 2020, 62 : 825 - 841
  • [10] ON A CLASS OF NON-CONVEX FUNCTIONALS AND THEIR APPLICATIONS
    TAHRAOUI, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 37 - 52