Non-convex, non-local functionals converging to the total variation

被引:9
|
作者
Brezis, Haim [1 ,2 ,3 ]
Hoai-Minh Nguyen [4 ]
机构
[1] Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Univ Paris 06, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[4] Ecole Polytech Fed Lausanne, SB MATHAA CAMA, Stn 8, CH-1015 Lausanne, Switzerland
关键词
SOBOLEV SPACES; GAMMA-CONVERGENCE; NORMS;
D O I
10.1016/j.crma.2016.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present new results concerning the approximation of the total variation, integral(Omega)vertical bar del u vertical bar, of a function u by non-local, non-convex functionals of the form Lambda delta(u) = integral(Omega)integral(Omega)delta phi(vertical bar u(x) - u(y)vertical bar/delta)/vertical bar x-y vertical bar(d+1)dxdy, as delta -> 0, where Omega is a domain in R-d and phi : [0, +infinity) > [0, +infinity) is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate, and numerous problems remain open. The original motivation of our work comes from Image Processing. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:24 / 27
页数:4
相关论文
共 50 条
  • [21] Convex 1-D Total Variation Denoising with Non-convex Regularization
    Selesnick, Ivan W.
    Parekh, Ankit
    Bayram, Ilker
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (02) : 141 - 144
  • [22] The method of moments for some one-dimensional, non-local, non-convex variational problems
    Aranda, E.
    Meziat, R. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 314 - 323
  • [23] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Kristian Bredies
    Dirk A. Lorenz
    Stefan Reiterer
    Journal of Optimization Theory and Applications, 2015, 165 : 78 - 112
  • [24] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Bredies, Kristian
    Lorenz, Dirk A.
    Reiterer, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) : 78 - 112
  • [25] Reconstruction of noisy signals by minimization of non-convex functionals
    Mederos, Boris
    Mollineda, Ramon A.
    Camarena, Julian Antolin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 355 - 376
  • [26] Radially symmetric critical points of non-convex functionals
    Kroemer, Stefan
    Kielhoefer, Hansjoerg
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 : 1261 - 1280
  • [27] An efficient non-convex total variation approach for image deblurring and denoising
    Liu, Jingjing
    Ma, Ruijie
    Zeng, Xiaoyang
    Liu, Wanquan
    Wang, Mingyu
    Chen, Hui
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 397
  • [28] Motion Estimation with Non-Local Total Variation Regularization
    Werlberger, Manuel
    Pock, Thomas
    Bischof, Horst
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2464 - 2471
  • [29] Robust Non-Local Total Variation Image Inpainting
    Nair, Jyothisha J.
    Francis, Dhanya
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 437 - 441
  • [30] Convex MR brain image reconstruction via non-convex total variation minimization
    Liu, Yilin
    Du, Huiqian
    Wang, Zexian
    Mei, Wenbo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2018, 28 (04) : 246 - 253