Cell-type-aware analysis of RNA-seq data

被引:11
|
作者
Jin, Chong [1 ]
Chen, Mengjie [2 ]
Lin, Dan-Yu [1 ]
Sun, Wei [1 ,3 ,4 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Univ Chicago, Genet Med, Chicago, IL USA
[3] Fred Hutchinson Canc Res Ctr, Publ Hlth Sci Div, Seattle, WA 98109 USA
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 04期
关键词
EXPRESSION; PACKAGE;
D O I
10.1038/s43588-021-00055-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most tissue samples are composed of different cell types. Differential expression analysis without accounting for cell-type composition cannot separate the changes due to cell-type composition or cell type-specific expression. We propose a computational framework to address these limitations: CARseq (cell-type-aware analysis of RNA-seq). CARseq employs a negative binomial distribution that appropriately models the count data from RNA-seq experiments. Simulation studies show that CARseq has substantially higher power than a linear model-based approach and it also provides more accurate estimate of the rankings of differentially expressed genes. We have applied CARseq to compare gene expression of schizophrenia/autism subjects versus controls, and identified the cell types underlying the difference and similarities of these two neuron-developmental diseases. Our results are consistent with the results from differential expression analysis using single-cell RNA-seq data.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [21] RseqFlow: workflows for RNA-Seq data analysis
    Wang, Ying
    Mehta, Gaurang
    Mayani, Rajiv
    Lu, Jingxi
    Souaiaia, Tade
    Chen, Yangho
    Clark, Andrew
    Yoon, Hee Jae
    Wan, Lin
    Evgrafov, Oleg V.
    Knowles, James A.
    Deelman, Ewa
    Chen, Ting
    BIOINFORMATICS, 2011, 27 (18) : 2598 - 2600
  • [22] SingleCAnalyzer: Interactive Analysis of Single Cell RNA-Seq Data on the Cloud
    Prieto, Carlos
    Barrios, David
    Villaverde, Angela
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [23] Methods of Identifying Cell Type from Single Cell RNA-seq Data and the Interpretation
    Zhang, Weiyu
    Jin, Weijia
    Yang, Jiaxi
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1672 - 1679
  • [24] A Comprehensive Review on RNA-seq Data Analysis
    Zhang Li
    Liu Xuejun
    TransactionsofNanjingUniversityofAeronauticsandAstronautics, 2016, 33 (03) : 339 - 361
  • [25] Parametric analysis of RNA-seq expression data
    Konishi, Tomokazu
    GENES TO CELLS, 2016, 21 (06) : 639 - 647
  • [26] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [27] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [28] Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package
    Tarazona, Sonia
    Furio-Tari, Pedro
    Turra, David
    Di Pietro, Antonio
    Jose Nueda, Maria
    Ferrer, Alberto
    Conesa, Ana
    NUCLEIC ACIDS RESEARCH, 2015, 43 (21)
  • [29] Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data
    Ghosh, Debashis
    Qin, Zhaohui S.
    GENES, 2010, 1 (02) : 317 - 334
  • [30] Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data
    Huang, Qianhui
    Liu, Yu
    Du, Yuheng
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (02) : 267 - 281