RseqFlow: workflows for RNA-Seq data analysis

被引:20
|
作者
Wang, Ying [1 ,2 ]
Mehta, Gaurang [3 ]
Mayani, Rajiv [3 ]
Lu, Jingxi [1 ]
Souaiaia, Tade [1 ]
Chen, Yangho [1 ]
Clark, Andrew [4 ]
Yoon, Hee Jae [4 ]
Wan, Lin [1 ]
Evgrafov, Oleg V. [4 ]
Knowles, James A. [4 ]
Deelman, Ewa [3 ]
Chen, Ting [1 ]
机构
[1] USC, Dept Biol Sci, Los Angeles, CA 90089 USA
[2] Xiamen Univ, Dept Automat, Xiamen, Peoples R China
[3] USC Informat Sci Inst, Marina Del Rey, CA 90292 USA
[4] USC Keck Sch Med, Dept Psychiat, Los Angeles, CA 90033 USA
关键词
EXPRESSION; ALIGNMENT;
D O I
10.1093/bioinformatics/btr441
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have developed an RNA-Seq analysis workflow for single-ended Illumina reads, termed RseqFlow. This workflow includes a set of analytic functions, such as quality control for sequencing data, signal tracks of mapped reads, calculation of expression levels, identification of differentially expressed genes and coding SNPs calling. This workflow is formalized and managed by the Pegasus Workflow Management System, which maps the analysis modules onto available computational resources, automatically executes the steps in the appropriate order and supervises the whole running process. RseqFlow is available as a Virtual Machine with all the necessary software, which eliminates any complex configuration and installation steps. Availability and implementation: http://genomics.isi.edu/rnaseq Contact: wangying@xmu.edu.cn; <knowles@med.usc.edu; deelman@isi.edu; tingchen@usc.edu Supplementary information: http://bioinformatics.oxfordjournals.org/cgi/content/full/btr441/DC1 are available at Bioinformatics online.
引用
收藏
页码:2598 / 2600
页数:3
相关论文
共 50 条
  • [1] Analysis of clustered RNA-seq data
    Park, Hyunjin
    Lee, Seungyeoun
    Kim, Ye Jin
    Choi, Myung-Sook
    Park, Taesung
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (01) : 19 - 31
  • [2] pyrpipe: a Python']Python package for RNA-Seq workflows
    Singh, Urminder
    Li, Jing
    Seetharam, Arun
    Wurtele, Eve Syrkin
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02) : 1 - 8
  • [3] Building workflows for gene fusion detection by RNA-seq
    Gross, Stephen
    Watson, Lisa
    Pathak, Smita
    Khrebtukova, Irina
    Schroth, Gary
    [J]. CANCER RESEARCH, 2014, 74 (19)
  • [4] Dynamic Model for RNA-seq Data Analysis
    Li, Lerong
    Xiong, Momiao
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [5] A comprehensive review on RNA-seq data analysis
    Zhang, Li
    Liu, Xuejun
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (03) : 339 - 361
  • [6] Computational analysis of bacterial RNA-Seq data
    McClure, Ryan
    Balasubramanian, Divya
    Sun, Yan
    Bobrovskyy, Maksym
    Sumby, Paul
    Genco, Caroline A.
    Vanderpool, Carin K.
    Tjaden, Brian
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (14)
  • [7] Statistical analysis of RNA-seq data at scale
    Leek, Jeff T.
    [J]. GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 563 - 563
  • [8] A Comprehensive Review on RNA-seq Data Analysis
    Zhang Li
    Liu Xuejun
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (03) : 339 - 361
  • [9] Parametric analysis of RNA-seq expression data
    Konishi, Tomokazu
    [J]. GENES TO CELLS, 2016, 21 (06) : 639 - 647
  • [10] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    [J]. 2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,