SCell: integrated analysis of single-cell RNA-seq data

被引:30
|
作者
Diaz, Aaron [1 ,2 ]
Liu, Siyuan J. [2 ]
Sandoval, Carmen [2 ]
Pollen, Alex [2 ]
Nowakowski, Tom J. [2 ]
Lim, Daniel A. [1 ,2 ,3 ]
Kriegstein, Arnold [2 ]
机构
[1] UCSF, Dept Neurol Surg, San Francisco, CA 94143 USA
[2] Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, San Francisco, CA USA
[3] Vet Affairs Med Ctr, San Francisco, CA 94121 USA
关键词
SAMPLES;
D O I
10.1093/bioinformatics/btw201
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of the composition of heterogeneous tissue has been greatly enabled by recent developments in single-cell transcriptomics. We present SCell, an integrated software tool for quality filtering, normalization, feature selection, iterative dimensionality reduction, clustering and the estimation of gene-expression gradients from large ensembles of single-cell RNA-seq datasets. SCell is open source, and implemented with an intuitive graphical interface. Scripts and protocols for the high-throughput pre-processing of large ensembles of single-cell, RNA-seq datasets are provided as an additional resource. Availability and Implementation: Binary executables for Windows, MacOS and Linux are available at http://sourceforge.net/projects/scell, source code and pre-processing scripts are available from https://github.com/diazlab/SCell.
引用
收藏
页码:2219 / 2220
页数:2
相关论文
共 50 条
  • [1] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    [J]. CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [2] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    [J]. MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [3] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [4] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    [J]. Genome Biology, 20
  • [5] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    [J]. Nature Methods, 2023, 20 : 665 - 672
  • [6] A web server for comparative analysis of single-cell RNA-seq data
    Amir Alavi
    Matthew Ruffalo
    Aiyappa Parvangada
    Zhilin Huang
    Ziv Bar-Joseph
    [J]. Nature Communications, 9
  • [7] Tumor genetic analysis from single-cell RNA-seq data
    Nawy, Tal
    [J]. NATURE METHODS, 2018, 15 (07) : 571 - 571
  • [8] A web server for comparative analysis of single-cell RNA-seq data
    Alavi, Amir
    Ruffalo, Matthew
    Parvangada, Aiyappa
    Huang, Zhilin
    Bar-Joseph, Ziv
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [9] Practical bioinformatics pipelines for single-cell RNA-seq data analysis
    Jiangping He
    Lihui Lin
    Jiekai Chen
    [J]. Biophysics Reports, 2022, 8 (03) : 158 - 169
  • [10] Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
    Chen, Geng
    Ning, Baitang
    Shi, Tieliu
    [J]. FRONTIERS IN GENETICS, 2019, 10