On convex perturbations with a bounded isotropic constant

被引:0
|
作者
B. Klartag
机构
[1] Institute for Advanced Study,School of Mathematics
来源
关键词
Slicing problem; isotropic constant; transportation of measure; hyperplane conjecture; 52A20 (52A38, 46B07);
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K \subset {\user2{\mathbb{R}}}^{n} $$\end{document} be a convex body and ɛ  > 0. We prove the existence of another convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K' \subset {\user2{\mathbb{R}}}^{n} $$\end{document}, whose Banach–Mazur distance from K is bounded by 1 + ɛ, such that the isotropic constant of K’ is smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c \mathord{\left/ {\vphantom {c {{\sqrt \varepsilon }}}} \right. \kern-\nulldelimiterspace} {{\sqrt \varepsilon }} $$\end{document}, where c  > 0 is a universal constant. As an application of our result, we present a slight improvement on the best general upper bound for the isotropic constant, due to Bourgain.
引用
收藏
页码:1274 / 1290
页数:16
相关论文
共 50 条
  • [41] PERTURBATIONS IN A SPACE OF CONSTANT CURVATURE
    HOREDT, G
    BULLETIN OF THE ASTRONOMICAL INSTITUTES OF CZECHOSLOVAKIA, 1971, 22 (02): : 82 - &
  • [42] On the isotropic constant of random polytopes
    Dafnis, N.
    Giannopoulos, A.
    Guedon, O.
    ADVANCES IN GEOMETRY, 2010, 10 (02) : 311 - 322
  • [43] Growth theorem of convex mappings on bounded convex circular domains
    刘太顺
    任广斌
    Science China Mathematics, 1998, (02) : 123 - 130
  • [44] Kobayashi hyperbolic convex domains not biholomorphic to bounded convex domains
    Andrew Zimmer
    Mathematische Zeitschrift, 2022, 300 : 1905 - 1916
  • [45] Growth theorem of convex mappings on bounded convex circular domains
    Liu, TS
    Ren, GB
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (02): : 123 - 130
  • [46] Growth theorem of convex mappings on bounded convex circular domains
    Taishun Liu
    Guangbin Ren
    Science in China Series A: Mathematics, 1998, 41 : 123 - 130
  • [47] On the Isotropic Constant of Random Polytopes
    David Alonso-Gutiérrez
    Alexander E. Litvak
    Nicole Tomczak-Jaegermann
    The Journal of Geometric Analysis, 2016, 26 : 645 - 662
  • [48] On the Isotropic Constant of Random Polytopes
    Alonso-Gutierrez, David
    Litvak, Alexander E.
    Tomczak-Jaegermann, Nicole
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 645 - 662
  • [49] Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies
    Manuel Ritoré
    Efstratios Vernadakis
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 643 - 663
  • [50] On the area and perimeter of a random convex hull in a bounded convex set
    Braker, H
    Hsing, T
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (04) : 517 - 550