On convex perturbations with a bounded isotropic constant

被引:0
|
作者
B. Klartag
机构
[1] Institute for Advanced Study,School of Mathematics
来源
关键词
Slicing problem; isotropic constant; transportation of measure; hyperplane conjecture; 52A20 (52A38, 46B07);
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K \subset {\user2{\mathbb{R}}}^{n} $$\end{document} be a convex body and ɛ  > 0. We prove the existence of another convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K' \subset {\user2{\mathbb{R}}}^{n} $$\end{document}, whose Banach–Mazur distance from K is bounded by 1 + ɛ, such that the isotropic constant of K’ is smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c \mathord{\left/ {\vphantom {c {{\sqrt \varepsilon }}}} \right. \kern-\nulldelimiterspace} {{\sqrt \varepsilon }} $$\end{document}, where c  > 0 is a universal constant. As an application of our result, we present a slight improvement on the best general upper bound for the isotropic constant, due to Bourgain.
引用
收藏
页码:1274 / 1290
页数:16
相关论文
共 50 条
  • [21] On limit classes of bounded perturbations
    E. K. Makarov
    Differential Equations, 2014, 50 : 1329 - 1335
  • [22] Bounded perturbations of nonselfadjoint operators
    不详
    OPERATOR FUNCTIONS AND LOCALIZATION OF SPECTRA, 2003, 1830 : 123 - 134
  • [23] BOUNDED PERTURBATIONS OF CONTROLLABLE SYSTEMS
    DAUER, JP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A651 - &
  • [24] On limit classes of bounded perturbations
    Makarov, E. K.
    DIFFERENTIAL EQUATIONS, 2014, 50 (10) : 1329 - 1335
  • [25] A CHARACTERIZATION OF RELATIVELY BOUNDED PERTURBATIONS
    BATTY, CJK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (APR): : 355 - 364
  • [26] On the isotropic constant of marginals
    Paouris, Grigoris
    STUDIA MATHEMATICA, 2012, 212 (03) : 219 - 236
  • [27] Stochastic perturbations of convex billiards
    Markarian, R.
    Rolla, L. T.
    Sidoravicius, V.
    Tal, F. A.
    Vares, M. E.
    NONLINEARITY, 2015, 28 (12) : 4425 - 4434
  • [28] Characterization of Convex Isotropic Functions
    Phoebus Rosakis
    Journal of Elasticity, 1997, 49 : 257 - 267
  • [29] Characterization of convex isotropic functions
    Rosakis, P
    JOURNAL OF ELASTICITY, 1997, 49 (03) : 257 - 267
  • [30] ON CONVEX ISOTROPIC FUNCTIONS OF MATRICES
    LEDRET, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (07): : 617 - 620