On convex perturbations with a bounded isotropic constant

被引:0
|
作者
B. Klartag
机构
[1] Institute for Advanced Study,School of Mathematics
来源
Geometric & Functional Analysis GAFA | 2006年 / 16卷
关键词
Slicing problem; isotropic constant; transportation of measure; hyperplane conjecture; 52A20 (52A38, 46B07);
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K \subset {\user2{\mathbb{R}}}^{n} $$\end{document} be a convex body and ɛ  > 0. We prove the existence of another convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K' \subset {\user2{\mathbb{R}}}^{n} $$\end{document}, whose Banach–Mazur distance from K is bounded by 1 + ɛ, such that the isotropic constant of K’ is smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c \mathord{\left/ {\vphantom {c {{\sqrt \varepsilon }}}} \right. \kern-\nulldelimiterspace} {{\sqrt \varepsilon }} $$\end{document}, where c  > 0 is a universal constant. As an application of our result, we present a slight improvement on the best general upper bound for the isotropic constant, due to Bourgain.
引用
收藏
页码:1274 / 1290
页数:16
相关论文
共 50 条
  • [31] Separation theorems for bounded convex sets of bounded operators
    Pichot, Mikael
    Seguin, Erik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 704 : 132 - 145
  • [32] On volumes of bounded convex sets
    Elster, Rosalind
    OPTIMIZATION, 2010, 59 (01) : 141 - 146
  • [33] Convex tours of bounded curvature
    Boissonnat, JD
    Czyzowicz, J
    Devillers, O
    Robert, JM
    Yvinec, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03): : 149 - 159
  • [34] Sharp numerical inclusion of the best constant for embedding H01(Ω) ↪ Lp (Ω) on bounded convex domain
    Tanaka, Kazuaki
    Sekine, Kouta
    Mizuguchi, Makoto
    Oishi, Shin'ichi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 306 - 313
  • [35] On the growth of localised perturbations in isotropic turbulence
    Encinar, Miguel P.
    5TH MADRID TURBULENCE WORKSHOP, 2024, 2753
  • [36] LOCAL BOUNDED PERTURBATIONS OF KMS STATES
    PRESUTTI, E
    SCACCIATELLI, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (10) : 1620 - 1625
  • [37] NOTE ON BOUNDED PERTURBATIONS OF CONTROLLABLE SYSTEMS
    DAUER, JP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) : 221 - 225
  • [38] Bounded perturbations of the correct restrictions and extensions
    Biyarov, Bazarkan
    Abdrasheva, Gulnara
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [39] RELATIVELY BOUNDED EXTENSIONS OF GENERATOR PERTURBATIONS
    Thieme, Horst R.
    Voigt, Juergen
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) : 947 - 969
  • [40] Convex bodies of constant width and constant brightness
    Howard, R
    ADVANCES IN MATHEMATICS, 2006, 204 (01) : 241 - 261