Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K \subset {\user2{\mathbb{R}}}^{n} $$\end{document} be a convex body and ɛ > 0. We prove the existence of another convex body \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K' \subset {\user2{\mathbb{R}}}^{n} $$\end{document}, whose Banach–Mazur distance from K is bounded by 1 + ɛ, such that the isotropic constant of K’ is smaller than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ c \mathord{\left/ {\vphantom {c {{\sqrt \varepsilon }}}} \right. \kern-\nulldelimiterspace} {{\sqrt \varepsilon }} $$\end{document}, where c > 0 is a universal constant. As an application of our result, we present a slight improvement on the best general upper bound for the isotropic constant, due to Bourgain.