On convex perturbations with a bounded isotropic constant

被引:0
|
作者
B. Klartag
机构
[1] Institute for Advanced Study,School of Mathematics
来源
关键词
Slicing problem; isotropic constant; transportation of measure; hyperplane conjecture; 52A20 (52A38, 46B07);
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K \subset {\user2{\mathbb{R}}}^{n} $$\end{document} be a convex body and ɛ  > 0. We prove the existence of another convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K' \subset {\user2{\mathbb{R}}}^{n} $$\end{document}, whose Banach–Mazur distance from K is bounded by 1 + ɛ, such that the isotropic constant of K’ is smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c \mathord{\left/ {\vphantom {c {{\sqrt \varepsilon }}}} \right. \kern-\nulldelimiterspace} {{\sqrt \varepsilon }} $$\end{document}, where c  > 0 is a universal constant. As an application of our result, we present a slight improvement on the best general upper bound for the isotropic constant, due to Bourgain.
引用
收藏
页码:1274 / 1290
页数:16
相关论文
共 50 条