Laplacians and Legendre Surfaces in Pseudo-Hermitian Geometry

被引:0
|
作者
Ji-Eun Lee
机构
[1] Chonnam National University,Institute of Basic Science
关键词
Legendre surface; Sasakian space forms; Pseudo-Hermitian structure; -parallel mean curvature; Proper mean curvature vector field; Primary 53B25; Secondary 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that for a Legendre surface N of 5-dimensional Sasakian space forms M5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^5$$\end{document}, if N satisfies ▵^H=λH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\triangle }} H=\lambda H$$\end{document} and tr∇^T^(H)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {tr}}{\hat{\nabla \ }}{{\hat{T}}}(H)=0$$\end{document} for a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert H\Vert $$\end{document} is a constant if and only if H is D^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{D}}$$\end{document}-parallel, N is a Chen surface, and trSH2=λ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{tr} S^2_{H}=\lambda \parallel H \parallel $$\end{document}. From this, for a Legendre surface N of M5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^5$$\end{document} such that ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert H\Vert $$\end{document} is a constant, if N satisfies ▵^H=λH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\triangle }} H=\lambda H$$\end{document} and tr∇^T^(H)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {tr}}{\hat{\nabla \ }}{\hat{T}}(H)=0$$\end{document} for a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then N is a D^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{D}}$$\end{document}-parallel Legendre–Chen surface. Moreover, we show that it is minimal, or a local product of a geodesic and a pseudo-Hermitian circle or two pseudo-Hermitian circles.
引用
收藏
页码:899 / 913
页数:14
相关论文
共 50 条
  • [41] Thermodynamics of pseudo-hermitian systems in equilibrium
    Jakubsky, Vit
    MODERN PHYSICS LETTERS A, 2007, 22 (15) : 1075 - 1084
  • [42] Dynamical invariants for pseudo-Hermitian Hamiltonians
    Simeonov, Lachezar S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [43] A pseudo-Hermitian β-Hermite family of matrices
    Marinello, G.
    Pato, M. P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 1049 - 1061
  • [44] Pseudo-Hermitian random matrix theory
    Srivastava, Shashi C. L.
    Jain, Sudhir R.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (2-3): : 276 - 290
  • [45] Entanglement of Pseudo-Hermitian Random States
    Goulart, Cleverson Andrade
    Pato, Mauricio Porto
    ENTROPY, 2020, 22 (10) : 1 - 13
  • [46] Pseudo-Hermitian β-Ensembles with Complex Eigenvalues
    Marinello, Gabriel
    Pato, Mauricio Porto
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 305 - 318
  • [47] Pseudo-Hermitian anti-Hermitian ensemble of Gaussian matrices
    Marinello, G.
    Pato, M. P.
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [48] CONSTRUCTION OF EQUIVALENCE MAPS IN PSEUDO-HERMITIAN GEOMETRY VIA LINEAR PARTIAL DIFFERENTIAL EQUATIONS
    Ozawa, Tetsuya
    Sato, Hajime
    KODAI MATHEMATICAL JOURNAL, 2011, 34 (01) : 105 - 123
  • [50] Optimal time evolution for pseudo-Hermitian Hamiltonians
    W. H. Wang
    Z. L. Chen
    Y. Song
    Y. J. Fan
    Theoretical and Mathematical Physics, 2020, 204 : 1020 - 1032