Laplacians and Legendre Surfaces in Pseudo-Hermitian Geometry

被引:0
|
作者
Ji-Eun Lee
机构
[1] Chonnam National University,Institute of Basic Science
关键词
Legendre surface; Sasakian space forms; Pseudo-Hermitian structure; -parallel mean curvature; Proper mean curvature vector field; Primary 53B25; Secondary 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that for a Legendre surface N of 5-dimensional Sasakian space forms M5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^5$$\end{document}, if N satisfies ▵^H=λH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\triangle }} H=\lambda H$$\end{document} and tr∇^T^(H)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {tr}}{\hat{\nabla \ }}{{\hat{T}}}(H)=0$$\end{document} for a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert H\Vert $$\end{document} is a constant if and only if H is D^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{D}}$$\end{document}-parallel, N is a Chen surface, and trSH2=λ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{tr} S^2_{H}=\lambda \parallel H \parallel $$\end{document}. From this, for a Legendre surface N of M5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^5$$\end{document} such that ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert H\Vert $$\end{document} is a constant, if N satisfies ▵^H=λH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\triangle }} H=\lambda H$$\end{document} and tr∇^T^(H)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {tr}}{\hat{\nabla \ }}{\hat{T}}(H)=0$$\end{document} for a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then N is a D^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{D}}$$\end{document}-parallel Legendre–Chen surface. Moreover, we show that it is minimal, or a local product of a geodesic and a pseudo-Hermitian circle or two pseudo-Hermitian circles.
引用
收藏
页码:899 / 913
页数:14
相关论文
共 50 条
  • [21] Quantization of pseudo-hermitian systems
    Baldiotti, M. C.
    Fresneda, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (29)
  • [22] Pseudo-Hermitian quantum mechanics
    Das, Ashok
    XIV MEXICAN SCHOOL ON PARTICLES AND FIELDS, 2011, 287
  • [23] Affine biharmonic submanifolds in 3-dimensional pseudo-Hermitian geometry
    Cho, Jong Taek
    Inoguchi, Jun-ichi
    Lee, Ji-Eun
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01): : 113 - 133
  • [24] Affine biharmonic submanifolds in 3-dimensional pseudo-Hermitian geometry
    Jong Taek Cho
    Jun-ichi Inoguchi
    Ji-Eun Lee
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2009, 79 : 113 - 133
  • [25] On hypercomplex pseudo-Hermitian manifolds
    Gribachev, K
    Manev, M
    Dimiev, S
    TRENDS IN COMPLEX ANALYSIS, DIFFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS, 2003, : 51 - 62
  • [26] GENERALIZED PSEUDO-HERMITIAN OPERATORS
    KRITT, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (02) : 343 - &
  • [27] PSEUDO-HERMITIAN SYMMETRIC SPACES
    SHAPIRO, RA
    COMMENTARII MATHEMATICI HELVETICI, 1971, 46 (04) : 529 - &
  • [28] Modulated Pseudo-Hermitian Dimer
    Suchkov, S. V.
    RUSSIAN PHYSICS JOURNAL, 2021, 63 (11) : 1947 - 1951
  • [29] On the pseudo-Hermitian nondiagonalizable Hamiltonians
    Scolarici, G
    Solombrino, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) : 4450 - 4459
  • [30] Hermitian dynamics in a class of pseudo-Hermitian networks
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW A, 2011, 84 (04):