Laplacians and Legendre Surfaces in Pseudo-Hermitian Geometry

被引:0
|
作者
Ji-Eun Lee
机构
[1] Chonnam National University,Institute of Basic Science
关键词
Legendre surface; Sasakian space forms; Pseudo-Hermitian structure; -parallel mean curvature; Proper mean curvature vector field; Primary 53B25; Secondary 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that for a Legendre surface N of 5-dimensional Sasakian space forms M5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^5$$\end{document}, if N satisfies ▵^H=λH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\triangle }} H=\lambda H$$\end{document} and tr∇^T^(H)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {tr}}{\hat{\nabla \ }}{{\hat{T}}}(H)=0$$\end{document} for a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert H\Vert $$\end{document} is a constant if and only if H is D^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{D}}$$\end{document}-parallel, N is a Chen surface, and trSH2=λ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{tr} S^2_{H}=\lambda \parallel H \parallel $$\end{document}. From this, for a Legendre surface N of M5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^5$$\end{document} such that ‖H‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert H\Vert $$\end{document} is a constant, if N satisfies ▵^H=λH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\triangle }} H=\lambda H$$\end{document} and tr∇^T^(H)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {tr}}{\hat{\nabla \ }}{\hat{T}}(H)=0$$\end{document} for a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then N is a D^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{D}}$$\end{document}-parallel Legendre–Chen surface. Moreover, we show that it is minimal, or a local product of a geodesic and a pseudo-Hermitian circle or two pseudo-Hermitian circles.
引用
收藏
页码:899 / 913
页数:14
相关论文
共 50 条
  • [31] Topological classification for intersection singularities of exceptional surfaces in pseudo-Hermitian systems
    Hongwei Jia
    Ruo-Yang Zhang
    Jing Hu
    Yixin Xiao
    Shuang Zhang
    Yifei Zhu
    C. T. Chan
    Communications Physics, 6
  • [32] Topological classification for intersection singularities of exceptional surfaces in pseudo-Hermitian systems
    Jia, Hongwei
    Zhang, Ruo-Yang
    Hu, Jing
    Xiao, Yixin
    Zhang, Shuang
    Zhu, Yifei
    Chan, C. T.
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [33] Path Integrals for Pseudo-Hermitian Hamiltonians
    Rivers, R. J.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1081 - 1096
  • [34] PSEUDO-HERMITIAN REPRESENTATION OF QUANTUM MECHANICS
    Mostafazadeh, Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (07) : 1191 - 1306
  • [35] Pseudo-Hermitian supersymmetry: a brief review
    Mostafazadeh, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (11) : 1371 - 1374
  • [36] Pseudo-Hermitian generalized Dirac oscillators
    Dutta, D.
    Panella, O.
    Roy, P.
    ANNALS OF PHYSICS, 2013, 331 : 120 - 126
  • [37] Path Integrals for Pseudo-Hermitian Hamiltonians
    R. J. Rivers
    International Journal of Theoretical Physics, 2011, 50 : 1081 - 1096
  • [38] Quantum brachistochrone problem and the geometry of the state space in pseudo-hermitian quantum mechanics
    Mostafazadeh, Ali
    PHYSICAL REVIEW LETTERS, 2007, 99 (13)
  • [39] EIGENVALUES OF SUMS OF PSEUDO-HERMITIAN MATRICES
    Foth, Philip
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 115 - 125
  • [40] THE METRIC OPERATORS FOR PSEUDO-HERMITIAN HAMILTONIAN
    Wang, Wen-Hua
    Chen, Zheng-Li
    Li, Wei
    ANZIAM JOURNAL, 2023, 65 (03): : 215 - 228