Perturbative Quantum Field Theory on Random Trees

被引:0
|
作者
Nicolas Delporte
Vincent Rivasseau
机构
[1] Université Paris-Sud,Laboratoire de physique théorique, CNRS UMR6827
[2] Université Paris-Saclay,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we start a systematic study of quantum field theory on random trees. Using precise probability estimates on their Galton–Watson branches and a multiscale analysis, we establish the general power counting of averaged Feynman amplitudes and check that they behave indeed as living on an effective space of dimension 4/3, the spectral dimension of random trees. In the “just renormalizable” case we prove convergence of the averaged amplitude of any completely convergent graph, and establish the basic localization and subtraction estimates required for perturbative renormalization. Possible consequences for an SYK-like model on random trees are briefly discussed.
引用
收藏
页码:857 / 887
页数:30
相关论文
共 50 条
  • [21] New Algebraic Aspects of Perturbative and Non-perturbative Quantum Field Theory
    Bergbauer, Christoph
    Kreimer, Dirk
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 45 - +
  • [22] NOVEL PERTURBATIVE SCHEME IN QUANTUM-FIELD THEORY
    BENDER, CM
    MILTON, KA
    MOSHE, M
    PINSKY, SS
    SIMMONS, LM
    PHYSICAL REVIEW D, 1988, 37 (06): : 1472 - 1484
  • [23] Derivation of the Fermi function in perturbative quantum field theory
    Matsuzaki, Akihiro
    Tanaka, Hidekazu
    PHYSICAL REVIEW C, 2012, 86 (06):
  • [24] The Jacobian conjecture as a problem of perturbative quantum field theory
    Abdesselam, A
    ANNALES HENRI POINCARE, 2003, 4 (02): : 199 - 215
  • [25] Locality and causality in perturbative algebraic quantum field theory
    Rejzner, Kasia
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
  • [26] New perturbative approach to quantum field theory.
    Gupta, V
    PROCEEDINGS OF THE X JORGE ANDRE SWIECA SUMMER SCHOOL ON PARTICLES AND FIELDS, 2000, : 500 - 504
  • [27] NON-PERTURBATIVE QUANTUM FIELD-THEORY
    MCCOY, BM
    WU, TT
    SCIENTIA SINICA, 1979, 22 (09): : 1021 - 1032
  • [28] Periods and Hodge structures in perturbative quantum field theory
    Weinzierl, Stefan
    FEYNMAN AMPLITUDES, PERIODS AND MOTIVES, 2015, 648 : 249 - 259
  • [29] The Jacobian Conjecture as a Problem of Perturbative Quantum Field Theory
    A. Abdesselam
    Annales Henri Poincaré, 2003, 4 : 199 - 215