Perturbative Quantum Field Theory on Random Trees

被引:0
|
作者
Nicolas Delporte
Vincent Rivasseau
机构
[1] Université Paris-Sud,Laboratoire de physique théorique, CNRS UMR6827
[2] Université Paris-Saclay,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we start a systematic study of quantum field theory on random trees. Using precise probability estimates on their Galton–Watson branches and a multiscale analysis, we establish the general power counting of averaged Feynman amplitudes and check that they behave indeed as living on an effective space of dimension 4/3, the spectral dimension of random trees. In the “just renormalizable” case we prove convergence of the averaged amplitude of any completely convergent graph, and establish the basic localization and subtraction estimates required for perturbative renormalization. Possible consequences for an SYK-like model on random trees are briefly discussed.
引用
收藏
页码:857 / 887
页数:30
相关论文
共 50 条
  • [41] The state space of perturbative quantum field theory in curved spacetimes
    Hollands, S
    Ruan, W
    ANNALES HENRI POINCARE, 2002, 3 (04): : 635 - 657
  • [42] Perturbative unitarity of Lee-Wick quantum field theory
    Anselmi, Damiano
    Piva, Marco
    PHYSICAL REVIEW D, 2017, 96 (04):
  • [43] Perturbative Aspects of Low-Dimensional Quantum Field Theory
    Wardaya, Asep Y.
    Zen, Freddy P.
    Kosasih, Jusak S.
    Triyanta
    Hartanto, Andreas
    2ND INTERNATIONAL CONFERENCE ON ADVANCES IN NUCLEAR SCIENCE AND ENGINEERING - ICANSE 2009, 2010, 1244 : 282 - +
  • [44] PERTURBATIVE CALCULATION OF NONPERTURBATIVE EFFECTS IN QUANTUM-FIELD THEORY
    VERSCHELDE, H
    PHYSICS LETTERS B, 1995, 351 (1-3) : 242 - 248
  • [45] Resummation of Mass Terms in Perturbative Massless Quantum Field Theory
    Andreas Aste
    Letters in Mathematical Physics, 2007, 81 : 77 - 92
  • [46] Perturbative post-quench overlaps in quantum field theory
    Kristóf Hódsági
    Márton Kormos
    Gábor Takács
    Journal of High Energy Physics, 2019
  • [47] Lectures on non perturbative field theory and quantum impurity problems
    Saleur, H
    TOPOLOGICAL ASPECTS OF LOW DIMENSIONAL SYSTEMS, 2000, 69 : 473 - 550
  • [48] Asymptotic improvement of resummations and perturbative predictions in quantum field theory
    Jentschura, UD
    Weniger, EJ
    Soff, G
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2000, 26 (10) : 1545 - 1568
  • [49] Perturbative post-quench overlaps in quantum field theory
    Hodsagi, Kristof
    Kormosa, Marton
    Takacs, Gabor
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [50] Modified Pade approximants and perturbative series in quantum field theory
    Dattoli, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1996, 109 (12): : 1655 - 1667