The Jacobian conjecture as a problem of perturbative quantum field theory

被引:10
|
作者
Abdesselam, A [1 ]
机构
[1] Univ Paris 13, Dept Math, F-93430 Villetaneuse, France
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / 02期
关键词
D O I
10.1007/s00023-003-0127-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Jacobian conjecture is an old unsolved problem in mathematics, which has been unsuccessfully attacked from many different angles. We add here another point of view pertaining to the so-called formal inverse approach, that of perturbative quantum field theory.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 50 条
  • [1] The Jacobian Conjecture as a Problem of Perturbative Quantum Field Theory
    A. Abdesselam
    [J]. Annales Henri Poincaré, 2003, 4 : 199 - 215
  • [2] Combinatorial Quantum Field Theory and the Jacobian Conjecture
    Tanasa, A.
    [J]. TRANSCENDENCE IN ALGEBRA, COMBINATORICS, GEOMETRY AND NUMBER THEORY, TRANS19, 2021, 373 : 249 - 259
  • [3] The Real Problem with Perturbative Quantum Field Theory
    Fraser, James D.
    [J]. BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2020, 71 (02): : 391 - 413
  • [4] Infrared problem in perturbative quantum field theory
    Duch, Pawel
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (10)
  • [5] Perturbative quantum field theory
    Sterman, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (18): : 3041 - 3065
  • [6] Perturbative quantum field theory
    Sterman, G
    [J]. CHALLENGES FOR THE 21ST CENTURY, 2000, : 479 - 508
  • [7] Combinatorics of (perturbative) quantum field theory
    Kreimer, D
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6): : 387 - 424
  • [8] On perturbative quantum field theory with boundary
    Bajnok, Z
    Böhm, G
    Takács, G
    [J]. NUCLEAR PHYSICS B, 2004, 682 (03) : 585 - 617
  • [9] Geometries in perturbative quantum field theory
    Schnetz, Oliver
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2021, 15 (04) : 743 - 791
  • [10] A counterexample to a conjecture related to the Jacobian problem
    DellAccio, F
    [J]. MATHEMATICAL NOTES, 1995, 58 (3-4) : 989 - 992