A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions

被引:0
|
作者
Gaurav Kucheriya
Gábor Tardos
机构
[1] Charles University,Department of Applied Mathematics
[2] Alfréd Rényi Institute of Mathematics,undefined
来源
Combinatorica | 2023年 / 43卷
关键词
Extremal graph theory; Turán number; Edge-ordered graphs; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The systematic study of Turán-type extremal problems for edge-ordered graphs was initiated by Gerbner et al. (Turán problems for Edge-ordered graphs, 2021). They conjectured that the extremal functions of edge-ordered forests of order chromatic number 2 are n1+o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1+o(1)}$$\end{document}. Here we resolve this conjecture proving the stronger upper bound of n2O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n2^{O(\sqrt{\log n})}$$\end{document}. This represents a gap in the family of possible extremal functions as other forbidden edge-ordered graphs have extremal functions Ω(nc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^c)$$\end{document} for some c>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c>1$$\end{document}. However, our result is probably not the last word: here we conjecture that the even stronger upper bound of nlogO(1)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\log ^{O(1)}n$$\end{document} also holds for the same set of extremal functions.
引用
收藏
页码:1111 / 1123
页数:12
相关论文
共 50 条
  • [1] A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
    Kucheriya, Gaurav
    Tardos, Gabor
    COMBINATORICA, 2023, 43 (06) : 1111 - 1123
  • [2] Nearly-linear monotone paths in edge-ordered graphs
    Matija Bucić
    Matthew Kwan
    Alexey Pokrovskiy
    Benny Sudakov
    Tuan Tran
    Adam Zsolt Wagner
    Israel Journal of Mathematics, 2020, 238 : 663 - 685
  • [3] Nearly-linear monotone paths in edge-ordered graphs
    Bucic, Matija
    Kwan, Matthew
    Pokrovskiy, Alexey
    Sudakov, Benny
    Tran, Tuan
    Wagner, Adam Zsolt
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) : 663 - 685
  • [4] Turan problems for edge-ordered graphs
    Gerbner, Daniel
    Methuku, Abhishek
    Nagy, Daniel T.
    Palvolgyi, Domotor
    Tardos, Gabor
    Vizer, Mate
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 160 : 66 - 113
  • [5] Finding monotone paths in edge-ordered graphs
    Katrenic, J.
    Semanisin, G.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1624 - 1632
  • [6] Monotone paths in edge-ordered sparse graphs
    Roditty, Y
    Shoham, B
    Yuster, R
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 411 - 417
  • [7] TILING EDGE-ORDERED GRAPHS WITH MONOTONE PATHS AND OTHER STRUCTURES
    Araujo, Igor
    Piga, Simon
    Treglown, Andrew
    Xiang, Zimu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1808 - 1839
  • [8] Increasing paths in edge-ordered graphs: the hypercube and random graph
    De Silva, Jessica
    Molla, Theodore
    Pfender, Florian
    Retter, Troy
    Tait, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [9] Extremal theory of vertex or edge ordered graphs
    Tardos, Gabor
    SURVEYS IN COMBINATORICS 2019, 2019, 456 : 221 - 236
  • [10] Edge-ordered Ramsey numbers
    Balko, Martin
    Vizer, Mate
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 87