A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions

被引:2
|
作者
Kucheriya, Gaurav [1 ]
Tardos, Gabor [2 ]
机构
[1] Charles Univ Prague, Dept Appl Math, Prague, Czech Republic
[2] Alfred Reny Inst Math, Budapest, Hungary
关键词
Extremal graph theory; Turan number; Edge-ordered graphs;
D O I
10.1007/s00493-023-00052-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The systematic study of Turan-type extremal problems for edge-ordered graphs was initiated by Gerbner et al. (Turan problems for Edge-ordered graphs, 2021). They conjectured that the extremal functions of edge-ordered forests of order chromatic number 2 are n(1+o(1)). Here we resolve this conjecture proving the stronger upper bound of n2(O(vlog n)). This represents a gap in the family of possible extremal functions as other forbidden edge-ordered graphs have extremal functions O(n(C)) for some c > 1. However, our result is probably not the last word: here we conjecture that the even stronger upper bound of n log(O(1)) n also holds for the same set of extremal functions.
引用
收藏
页码:1111 / 1123
页数:13
相关论文
共 50 条
  • [1] A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
    Gaurav Kucheriya
    Gábor Tardos
    Combinatorica, 2023, 43 : 1111 - 1123
  • [2] Nearly-linear monotone paths in edge-ordered graphs
    Matija Bucić
    Matthew Kwan
    Alexey Pokrovskiy
    Benny Sudakov
    Tuan Tran
    Adam Zsolt Wagner
    Israel Journal of Mathematics, 2020, 238 : 663 - 685
  • [3] Nearly-linear monotone paths in edge-ordered graphs
    Bucic, Matija
    Kwan, Matthew
    Pokrovskiy, Alexey
    Sudakov, Benny
    Tran, Tuan
    Wagner, Adam Zsolt
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) : 663 - 685
  • [4] Turan problems for edge-ordered graphs
    Gerbner, Daniel
    Methuku, Abhishek
    Nagy, Daniel T.
    Palvolgyi, Domotor
    Tardos, Gabor
    Vizer, Mate
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 160 : 66 - 113
  • [5] Finding monotone paths in edge-ordered graphs
    Katrenic, J.
    Semanisin, G.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1624 - 1632
  • [6] Monotone paths in edge-ordered sparse graphs
    Roditty, Y
    Shoham, B
    Yuster, R
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 411 - 417
  • [7] TILING EDGE-ORDERED GRAPHS WITH MONOTONE PATHS AND OTHER STRUCTURES
    Araujo, Igor
    Piga, Simon
    Treglown, Andrew
    Xiang, Zimu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1808 - 1839
  • [8] Increasing paths in edge-ordered graphs: the hypercube and random graph
    De Silva, Jessica
    Molla, Theodore
    Pfender, Florian
    Retter, Troy
    Tait, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [9] Extremal theory of vertex or edge ordered graphs
    Tardos, Gabor
    SURVEYS IN COMBINATORICS 2019, 2019, 456 : 221 - 236
  • [10] Edge-ordered Ramsey numbers
    Balko, Martin
    Vizer, Mate
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 87