Nearly-linear monotone paths in edge-ordered graphs

被引:7
|
作者
Bucic, Matija [1 ]
Kwan, Matthew [2 ]
Pokrovskiy, Alexey [3 ]
Sudakov, Benny [1 ]
Tran, Tuan [4 ]
Wagner, Adam Zsolt [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Birkbeck Univ London, Dept Econ Math & Stat, London WC1E 7HX, England
[4] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
关键词
EXTREMAL COMBINATORICS; REGULAR SUBGRAPHS; ALTITUDE;
D O I
10.1007/s11856-020-2035-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How long a monotone path can one always find in any edge-ordering of the complete graphK(n)? This appealing question was first asked by Chvatal and Komlos in 1971, and has since attracted the attention of many researchers, inspiring a variety of related problems. The prevailing conjecture is that one can always find a monotone path of linear length, but until now the best known lower bound wasn(2/3-o(1)). In this paper we almost close this gap, proving that any edge-ordering of the complete graph contains a monotone path of lengthn(1-o(1)).
引用
收藏
页码:663 / 685
页数:23
相关论文
共 50 条
  • [1] Nearly-linear monotone paths in edge-ordered graphs
    Matija Bucić
    Matthew Kwan
    Alexey Pokrovskiy
    Benny Sudakov
    Tuan Tran
    Adam Zsolt Wagner
    Israel Journal of Mathematics, 2020, 238 : 663 - 685
  • [2] Finding monotone paths in edge-ordered graphs
    Katrenic, J.
    Semanisin, G.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1624 - 1632
  • [3] Monotone paths in edge-ordered sparse graphs
    Roditty, Y
    Shoham, B
    Yuster, R
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 411 - 417
  • [4] TILING EDGE-ORDERED GRAPHS WITH MONOTONE PATHS AND OTHER STRUCTURES
    Araujo, Igor
    Piga, Simon
    Treglown, Andrew
    Xiang, Zimu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1808 - 1839
  • [5] NON-CROSSING MONOTONE PATHS AND BINARY TREES IN EDGE-ORDERED COMPLETE GEOMETRIC GRAPHS
    Duque, F.
    Fabila-Monroy, R.
    Hidalgo-Toscano, C.
    Perez-Lantero, P.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (01) : 28 - 39
  • [6] Non-crossing monotone paths and binary trees in edge-ordered complete geometric graphs
    F. Duque
    R. Fabila-Monroy
    C. Hidalgo-Toscano
    P. Pérez-Lantero
    Acta Mathematica Hungarica, 2021, 165 : 28 - 39
  • [7] Increasing paths in edge-ordered graphs: the hypercube and random graph
    De Silva, Jessica
    Molla, Theodore
    Pfender, Florian
    Retter, Troy
    Tait, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [8] A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
    Gaurav Kucheriya
    Gábor Tardos
    Combinatorica, 2023, 43 : 1111 - 1123
  • [9] A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
    Kucheriya, Gaurav
    Tardos, Gabor
    COMBINATORICA, 2023, 43 (06) : 1111 - 1123
  • [10] INCREASING SEQUENCES WITH NONZERO BLOCK SUMS AND INCREASING PATHS IN EDGE-ORDERED GRAPHS
    CALDERBANK, AR
    CHUNG, FRK
    STURTEVANT, DG
    DISCRETE MATHEMATICS, 1984, 50 (01) : 15 - 28