Extremal theory of vertex or edge ordered graphs

被引:0
|
作者
Tardos, Gabor [1 ]
机构
[1] Renyi Inst Math, Budapest, Hungary
来源
关键词
MATRICES; NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We enrich the structure of finite simple graphs with a linear order on either the vertices or the edges. Extending the standard question of Turan-type extrema' graph theory we ask for the maximal number of edges in such a vertex or edge ordered graph on n vertices that does not contain a given pattern (or several patterns) as a subgraph. The forbidden subgraph itself is also a vertex or edge ordered graph, so we forbid a certain subgraph with a specified ordering, but we allow the same underlying subgraph with a different (vertex or edge) order. This allows us to study a large number of extrema' problems that are not expressible in the classical theory. In this survey we report on ongoing research. For easier access we include sketches of proofs of selected results.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [1] A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
    Gaurav Kucheriya
    Gábor Tardos
    Combinatorica, 2023, 43 : 1111 - 1123
  • [2] A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
    Kucheriya, Gaurav
    Tardos, Gabor
    COMBINATORICA, 2023, 43 (06) : 1111 - 1123
  • [3] On Vertex, Edge, and Vertex-Edge Random Graphs
    Beer, Elizabeth
    Fill, James Allen
    Janson, Svante
    Scheinerman, Edward R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [4] Tilings in vertex ordered graphs
    Balogh, Jozsef
    Li, Lina
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 171 - 201
  • [5] Extremal graphs with respect to the vertex PI index
    Nadjafi-Arani, M. J.
    Fath-Tabar, G. H.
    Ashrafi, A. R.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (12) : 1838 - 1840
  • [6] On the extremal graphs with respect to the vertex PI index
    Ilic, Aleksandar
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1213 - 1217
  • [7] Extremal graphs with bounded vertex bipartiteness number
    Robbiano, Maria
    Tapia Morales, Katherine
    San Martin, Bernardo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 28 - 36
  • [8] Extremal properties of the bipartite vertex frustration of graphs
    Yarahmadi, Zahra
    Ashrafi, Ali Reza
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1774 - 1777
  • [9] Generalizing Vertex Pancyclic and -ordered Graphs
    Li, Ruijuan
    Zhang, Xinhong
    Guo, Qiaoping
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1539 - 1554
  • [10] ON VERTEX-EDGE AND EDGE-VERTEX CONNECTIVITY INDICES OF GRAPHS
    Pawar, Shiladhar
    Naji, Ahmed mohsen
    Soner, Nandappa d.
    Ashrafi, Ali reza
    Ghalavand, Ali
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (02): : 225 - 239