Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds

被引:0
|
作者
Sharief Deshmukh
机构
[1] King Saud University,Department of Mathematics, College of science
来源
关键词
Almost contact metric manifold; Sasakian manifold; trans-Sasakian manifold; Poisson equation; 53C15; 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is shown that for a 3-dimensional compact simply connected trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document}, the smooth functions α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha,\beta}$$\end{document} satisfy the Poisson equations Δα=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \beta}$$\end{document}, Δα=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \alpha ^{2}\beta}$$\end{document} and Δβ=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \beta = \alpha ^{2}\beta}$$\end{document}, respectively, if and only if it is homothetic to a Sasakian manifold. We also find a necessary and sufficient condition for a connected 3-dimensional trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document} in terms of a differential equation satisfied by the smooth function α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document} to be homothetic to a Sasakian manifold.
引用
收藏
页码:2951 / 2958
页数:7
相关论文
共 50 条
  • [1] Trans-Sasakian manifolds homothetic to Sasakian manifolds
    Desmukh, Sharief
    De, Uday Chand
    Al-Solamy, Falleh
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (3-4): : 439 - 448
  • [2] Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds
    Deshmukh, Sharief
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2951 - 2958
  • [3] Some Conditions on Trans-Sasakian Manifolds to Be Homothetic to Sasakian Manifolds
    Deshmukh, Sharief
    Ishan, Amira
    Belova, Olga
    Al-Shaikh, Suha B.
    [J]. MATHEMATICS, 2021, 9 (16)
  • [4] ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    De, U. C.
    De, Krishnendu
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2013, 62 (02): : 37 - 51
  • [5] Nearly trans-sasakian manifolds
    Shukla, A
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 1996, 23 (02): : 139 - 144
  • [6] On Compact Trans-Sasakian Manifolds
    Al-Dayel, Ibrahim
    Deshmukh, Sharief
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [7] Generalized Trans-Sasakian manifolds
    Sinacer, Moulay Larbi
    Beldjilali, Gherici
    Bayour, Benaoumeur
    Bouzir, Habib
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 87
  • [8] A note on trans-Sasakian manifolds
    Deshmukh, Sharief
    De, Uday Chand
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 159 - 169
  • [9] ON η-EINSTEIN TRANS-SASAKIAN MANIFOLDS
    Al-Solamy, Falleh R.
    Kim, Jeong-Sik
    Tripathi, Mukut Mani
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 (02): : 417 - 440
  • [10] ON (is an element of)-TRANS-SASAKIAN MANIFOLDS
    Prasad, Rajendra
    Prakash, Jai
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 5 (01): : 86 - 98