Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds

被引:0
|
作者
Sharief Deshmukh
机构
[1] King Saud University,Department of Mathematics, College of science
来源
关键词
Almost contact metric manifold; Sasakian manifold; trans-Sasakian manifold; Poisson equation; 53C15; 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is shown that for a 3-dimensional compact simply connected trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document}, the smooth functions α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha,\beta}$$\end{document} satisfy the Poisson equations Δα=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \beta}$$\end{document}, Δα=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \alpha ^{2}\beta}$$\end{document} and Δβ=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \beta = \alpha ^{2}\beta}$$\end{document}, respectively, if and only if it is homothetic to a Sasakian manifold. We also find a necessary and sufficient condition for a connected 3-dimensional trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document} in terms of a differential equation satisfied by the smooth function α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document} to be homothetic to a Sasakian manifold.
引用
收藏
页码:2951 / 2958
页数:7
相关论文
共 50 条
  • [21] ON SLANT CURVES IN TRANS-SASAKIAN MANIFOLDS
    Guvenc, Saban
    Ozgur, Cihan
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (02): : 81 - 100
  • [22] Invariant Submanifolds of Trans-Sasakian Manifolds
    Bagewadi, C. S.
    Anitha, B. S.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (10) : 1469 - 1483
  • [23] On some special type of trans-Sasakian manifolds
    Prasad, Rajendra
    Pankaj
    Tripathi, M. M.
    Shukla, S. S.
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2009, 2 : 1 - 17
  • [24] CR-SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS
    PRASAD, S
    OJHA, RH
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (7-8): : 427 - 434
  • [25] Lightlike Hypersurfaces in Indefinite Trans-Sasakian Manifolds
    Massamba, Fortune
    [J]. RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 251 - 287
  • [26] THE LOCAL-STRUCTURE OF TRANS-SASAKIAN MANIFOLDS
    MARRERO, JC
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 162 : 77 - 86
  • [27] A study on magnetic curves in trans-Sasakian manifolds
    Bozdag, Serife Nur
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (03): : 47 - 60
  • [28] Some curvature properties of trans-Sasakian manifolds
    Akbar A.
    Sarkar A.
    [J]. Lobachevskii Journal of Mathematics, 2014, 35 (2) : 56 - 64
  • [29] Lightlike Hypersurfaces in Indefinite Trans-Sasakian Manifolds
    Fortuné Massamba
    [J]. Results in Mathematics, 2013, 63 : 251 - 287
  • [30] phi-RECURRENT TRANS-SASAKIAN MANIFOLDS
    Nagaraja, H. G.
    [J]. MATEMATICKI VESNIK, 2011, 63 (02): : 79 - 86