Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds

被引:0
|
作者
Sharief Deshmukh
机构
[1] King Saud University,Department of Mathematics, College of science
来源
关键词
Almost contact metric manifold; Sasakian manifold; trans-Sasakian manifold; Poisson equation; 53C15; 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is shown that for a 3-dimensional compact simply connected trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document}, the smooth functions α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha,\beta}$$\end{document} satisfy the Poisson equations Δα=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \beta}$$\end{document}, Δα=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \alpha ^{2}\beta}$$\end{document} and Δβ=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \beta = \alpha ^{2}\beta}$$\end{document}, respectively, if and only if it is homothetic to a Sasakian manifold. We also find a necessary and sufficient condition for a connected 3-dimensional trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document} in terms of a differential equation satisfied by the smooth function α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document} to be homothetic to a Sasakian manifold.
引用
下载
收藏
页码:2951 / 2958
页数:7
相关论文
共 50 条
  • [31] Geometry of Harmonic Nearly Trans-Sasakian Manifolds
    Rustanov, Aligadzhi R.
    AXIOMS, 2023, 12 (08)
  • [32] A Note on Invariant Submanifolds of Trans-Sasakian Manifolds
    Hu, Chaogui
    Wang, Yaning
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2016, 9 (02): : 27 - 35
  • [33] Noninvariant Hypersurfaces of a Nearly Trans-Sasakian Manifolds
    Yadav, Satya Prakash
    Kishor, Shyam
    JOURNAL OF MATHEMATICS, 2014, 2014
  • [34] A REMARK ON TRANS-SASAKIAN 3-MANIFOLDS
    Wang, Yaning
    Wang, Wenjie
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (01): : 257 - 264
  • [35] TRANS-SASAKIAN MANIFOLDS SATISFYING CERTAIN CONDITIONS
    Chaubey, S. K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 305 - 314
  • [36] Some New Results on Trans-Sasakian Manifolds
    Wang, Lei
    Zhao, Yan
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [37] Some results on K - contact and Trans-Sasakian Manifolds
    Channabasappa, Bagewadi
    Basavarajappa, N. S.
    Prakasha, D. G.
    Venkatesha
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2008, 1 (02): : 21 - 31
  • [38] Some Characterizations of Three-Dimensional Trans-Sasakian Manifolds Admitting η-Ricci Solitons and Trans-Sasakian Manifolds as Kagan Subprojective Spaces
    A. Sarkar
    A. Sil
    A. K. Paul
    Ukrainian Mathematical Journal, 2020, 72 : 488 - 494
  • [39] Some Characterizations of Three-Dimensional Trans-Sasakian Manifolds Admittingη-Ricci Solitons and Trans-Sasakian Manifolds as Kagan Subprojective Spaces
    Sarkar, A.
    Sil, A.
    Paul, A. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (03) : 488 - 494
  • [40] On a class of three-dimensional trans-Sasakian manifolds
    De, Uday Chand
    De, Krishnendu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 795 - 808