Trans-Sasakian manifolds homothetic to Sasakian manifolds

被引:11
|
作者
Desmukh, Sharief [1 ]
De, Uday Chand [2 ]
Al-Solamy, Falleh [3 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[2] Univ Calcutta, Dept Pure Math, Kolkata 700073, W Bengal, India
[3] King Abdulaziz Univ, Coll Sci, Dept Math, POB 80015, Jeddah 21589, Saudi Arabia
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2016年 / 88卷 / 3-4期
关键词
Sasakian manifold; trans-Sasakian manifold; Jacobi-type vector field; axiom of flat torus;
D O I
10.5486/PMD.2016.7398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain necessary and sufficient conditions for a 3 dimensional compact and connected trans-Sasakian manifold of type (alpha, beta) to be homothetic to a Sasakian manifold. We also show that if a compact trans-Sasakian manifold admits an isometric immersion in the Euclidean space R-4 with Reeb vector field being transformation of unit normal vector field under the complex structure of R-4, then it is homothetic to a Sasakian manifold. We also introduce the axiom of flat torus for a 3-dimensional trans-Sasakian manifold and show that a 3-dimensional connected trans-Sasakian manifold with Ricci curvature in the direction of Reeb vector field a nonzero constant, satisfying axiom of flat torus is homothetic to a Sasakian manifold.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [1] Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds
    Sharief Deshmukh
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 2951 - 2958
  • [2] Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds
    Deshmukh, Sharief
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2951 - 2958
  • [3] Some Conditions on Trans-Sasakian Manifolds to Be Homothetic to Sasakian Manifolds
    Deshmukh, Sharief
    Ishan, Amira
    Belova, Olga
    Al-Shaikh, Suha B.
    [J]. MATHEMATICS, 2021, 9 (16)
  • [4] ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    De, U. C.
    De, Krishnendu
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2013, 62 (02): : 37 - 51
  • [5] Nearly trans-sasakian manifolds
    Shukla, A
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 1996, 23 (02): : 139 - 144
  • [6] On Compact Trans-Sasakian Manifolds
    Al-Dayel, Ibrahim
    Deshmukh, Sharief
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [7] Generalized Trans-Sasakian manifolds
    Sinacer, Moulay Larbi
    Beldjilali, Gherici
    Bayour, Benaoumeur
    Bouzir, Habib
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 87
  • [8] A note on trans-Sasakian manifolds
    Deshmukh, Sharief
    De, Uday Chand
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 159 - 169
  • [9] ON η-EINSTEIN TRANS-SASAKIAN MANIFOLDS
    Al-Solamy, Falleh R.
    Kim, Jeong-Sik
    Tripathi, Mukut Mani
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 (02): : 417 - 440
  • [10] ON (is an element of)-TRANS-SASAKIAN MANIFOLDS
    Prasad, Rajendra
    Prakash, Jai
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 5 (01): : 86 - 98