Essential spectra of upper triangular relation matrices

被引:0
|
作者
Yanyan Du
Junjie Huang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Inner Mongolia University,School of Mathematical Sciences
来源
关键词
Relation matrix; Essential spectrum; Weyl spectrum; Essential approximate point spectrum; Browder spectrum; Browder essential approximate point spectrum; 47A06; 47A10; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let H and K be infinite dimensional complex separable Hilbert spaces. Given the operators A∈LR(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathcal{L}\mathcal{R}(H)$$\end{document}, B∈LR(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in \mathcal{L}\mathcal{R}(K)$$\end{document} and C∈LR(K,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in \mathcal{L}\mathcal{R}(K,H)$$\end{document}, we define upper triangular linear relation matrix MC:=AC0B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{C}:=\left( {\begin{matrix} A &{}C \\ 0 &{} B \\ \end{matrix}} \right) $$\end{document}. In this paper, we obtain σ⋆(MC)⊆σ⋆(AC(0)H)∪σ⋆(B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(M_{C})\subseteq \sigma _{\star }(\left[ {\begin{matrix} A &{}C(0)\\ \end{matrix}} \right] _{H})\cup \sigma _{\star }(B),$$\end{document} and the relations between σ⋆(MC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(M_{C})$$\end{document} and σ⋆(A)∪σ⋆(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(A)\cup \sigma _{\star }(B)$$\end{document} are also presented, where σ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }$$\end{document} is chosen from the essential spectrum, the Weyl spectrum, the essential approximate point spectrum, the Browder spectrum and the Browder essential approximate point spectrum.
引用
收藏
页码:43 / 61
页数:18
相关论文
共 50 条
  • [1] Essential spectra of upper triangular relation matrices
    Du, Yanyan
    Huang, Junjie
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (01): : 43 - 61
  • [2] Perturbation of spectra for upper triangular relation matrices
    Wu, Xiufeng
    Chen, Alatancang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 19 (01)
  • [3] Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices
    Bai, Qingmei
    Huang, Junjie
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08): : 1583 - 1594
  • [4] Spectra of upper triangular operator matrices
    Benhida, C
    Zerouali, EH
    Zguitti, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 3013 - 3020
  • [5] On the range of upper triangular relation matrices
    Du, Yanyan
    Huang, Junjie
    Huo, Ran
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5750 - 5769
  • [6] Spectra for upper triangular linear relation matrices through local spectral theory
    Teresa Álvarez
    Sonia Keskes
    Aequationes mathematicae, 2024, 98 : 399 - 422
  • [7] Spectra for upper triangular linear relation matrices through local spectral theory
    Alvarez, Teresa
    Keskes, Sonia
    AEQUATIONES MATHEMATICAE, 2024, 98 (02) : 399 - 422
  • [8] Essential spectrum of upper triangular operator matrices
    Wu, Xiufeng
    Huang, Junjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 780 - 798
  • [9] Essential spectrum of upper triangular operator matrices
    Xiufeng Wu
    Junjie Huang
    Annals of Functional Analysis, 2020, 11 : 780 - 798
  • [10] Browder spectra for upper triangular operator matrices
    Cao, Xiaohong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 477 - 484