Essential spectra of upper triangular relation matrices

被引:0
|
作者
Yanyan Du
Junjie Huang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Inner Mongolia University,School of Mathematical Sciences
来源
关键词
Relation matrix; Essential spectrum; Weyl spectrum; Essential approximate point spectrum; Browder spectrum; Browder essential approximate point spectrum; 47A06; 47A10; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let H and K be infinite dimensional complex separable Hilbert spaces. Given the operators A∈LR(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathcal{L}\mathcal{R}(H)$$\end{document}, B∈LR(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in \mathcal{L}\mathcal{R}(K)$$\end{document} and C∈LR(K,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in \mathcal{L}\mathcal{R}(K,H)$$\end{document}, we define upper triangular linear relation matrix MC:=AC0B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{C}:=\left( {\begin{matrix} A &{}C \\ 0 &{} B \\ \end{matrix}} \right) $$\end{document}. In this paper, we obtain σ⋆(MC)⊆σ⋆(AC(0)H)∪σ⋆(B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(M_{C})\subseteq \sigma _{\star }(\left[ {\begin{matrix} A &{}C(0)\\ \end{matrix}} \right] _{H})\cup \sigma _{\star }(B),$$\end{document} and the relations between σ⋆(MC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(M_{C})$$\end{document} and σ⋆(A)∪σ⋆(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(A)\cup \sigma _{\star }(B)$$\end{document} are also presented, where σ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }$$\end{document} is chosen from the essential spectrum, the Weyl spectrum, the essential approximate point spectrum, the Browder spectrum and the Browder essential approximate point spectrum.
引用
收藏
页码:43 / 61
页数:18
相关论文
共 50 条
  • [31] COCHARACTERS OF UPPER TRIANGULAR MATRICES
    Centrone, Lucio
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2013, 2 (01) : 49 - 77
  • [32] On upper triangular nonnegative matrices
    Yizhi Chen
    Xianzhong Zhao
    Zhongzhu Liu
    Czechoslovak Mathematical Journal, 2015, 65 : 1 - 20
  • [33] Factorizations of upper triangular matrices
    Bachman, Dale
    Baeth, Nicholas R.
    Gossell, James
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 138 - 157
  • [34] Characterizations of perturbations of spectra of 2 x 2 upper triangular operator matrices
    Zhang, Shifang
    Wu, Zhaoqi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) : 103 - 110
  • [35] Upper Semi-Weyl and Upper Semi-Browder Spectra of Unbounded Upper Triangular Operator Matrices
    Bai, Wurichaihu
    Bai, Qingmei
    Chen, Alatancang
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [36] The Boundedness Below of 2 x 2 Upper Triangular Linear Relation Matrices
    Huo, Ran
    Du, Yanyan
    Huang, Junjie
    JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (01) : 71 - 83
  • [37] THE ESSENTIAL SPECTRUM EQUALITIES OF 2 x 2 UNBOUNDED UPPER TRIANGULAR OPERATOR MATRICES
    Liu, Xinran
    Wu, Deyu
    OPERATORS AND MATRICES, 2023, 17 (04): : 1065 - 1076
  • [38] ON THE MATRICES THAT PRESERVE THE VALUE OF THE IMMANANT OF THE UPPER TRIANGULAR MATRICES
    Fernandes, Rosario
    da Cruz, Henrique F.
    OPERATORS AND MATRICES, 2010, 4 (01): : 77 - 101
  • [39] Factorizations of upper triangular Toeplitz matrices
    Bachman D.
    Baeth N.R.
    McQueen A.
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (2) : 131 - 150
  • [40] Group gradings on upper triangular matrices
    Valenti, A.
    Zaicev, M. V.
    ARCHIV DER MATHEMATIK, 2007, 89 (01) : 33 - 40