Essential spectra of upper triangular relation matrices

被引:0
|
作者
Yanyan Du
Junjie Huang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Inner Mongolia University,School of Mathematical Sciences
来源
关键词
Relation matrix; Essential spectrum; Weyl spectrum; Essential approximate point spectrum; Browder spectrum; Browder essential approximate point spectrum; 47A06; 47A10; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let H and K be infinite dimensional complex separable Hilbert spaces. Given the operators A∈LR(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathcal{L}\mathcal{R}(H)$$\end{document}, B∈LR(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in \mathcal{L}\mathcal{R}(K)$$\end{document} and C∈LR(K,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in \mathcal{L}\mathcal{R}(K,H)$$\end{document}, we define upper triangular linear relation matrix MC:=AC0B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{C}:=\left( {\begin{matrix} A &{}C \\ 0 &{} B \\ \end{matrix}} \right) $$\end{document}. In this paper, we obtain σ⋆(MC)⊆σ⋆(AC(0)H)∪σ⋆(B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(M_{C})\subseteq \sigma _{\star }(\left[ {\begin{matrix} A &{}C(0)\\ \end{matrix}} \right] _{H})\cup \sigma _{\star }(B),$$\end{document} and the relations between σ⋆(MC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(M_{C})$$\end{document} and σ⋆(A)∪σ⋆(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }(A)\cup \sigma _{\star }(B)$$\end{document} are also presented, where σ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\star }$$\end{document} is chosen from the essential spectrum, the Weyl spectrum, the essential approximate point spectrum, the Browder spectrum and the Browder essential approximate point spectrum.
引用
收藏
页码:43 / 61
页数:18
相关论文
共 50 条
  • [41] Group gradings on upper triangular matrices
    A. Valenti
    M. V. Zaicev
    Archiv der Mathematik, 2007, 89 : 33 - 40
  • [42] Preserving diagonalisability on upper triangular matrices
    Kobal, D
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (03): : 189 - 194
  • [43] Upper triangular matrices and Billiard Arrays
    Yang, Yang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 508 - 536
  • [44] Conjugacy in groups of upper triangular matrices
    Isaacs, IM
    Karagueuzian, D
    JOURNAL OF ALGEBRA, 1998, 202 (02) : 704 - 711
  • [45] CFI upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (07): : 1217 - 1227
  • [46] A Field of Quantum Upper Triangular Matrices
    De Commer, Kenny
    Flore, Matthias
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (16) : 5047 - 5077
  • [47] SOME SPECTRA PROPERTIES OF UNBOUNDED 2 x 2 UPPER TRIANGULAR OPERATOR MATRICES
    Bai, Qingmei
    Chen, Alatancang
    Huang, Junjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03): : 412 - 424
  • [48] Homogeneous involutions on upper triangular matrices
    de Mello, Thiago Castilho
    ARCHIV DER MATHEMATIK, 2022, 118 (04) : 365 - 374
  • [49] On commuting varieties of upper triangular matrices
    Basili, Roberta
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1533 - 1541
  • [50] On the invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04): : 538 - 547