Spectra for upper triangular linear relation matrices through local spectral theory

被引:1
|
作者
Alvarez, Teresa [1 ]
Keskes, Sonia [2 ,3 ]
机构
[1] Univ Oviedo, Dept Math, Oviedo 33007, Asturias, Spain
[2] Univ Monastir, Higher Inst Comp Sci Mahdia, Dept Math, Mahdia, Tunisia
[3] Univ Sfax, Fac Sci Sfax, Lab Dynam Syst & Combinatorial, Sfax, Tunisia
关键词
Linear relation matrix; Fredholm spectrum; Drazin spectrum and SVEP; OPERATOR MATRICES; DRAZIN INVERSE; BROWDER SPECTRA;
D O I
10.1007/s00010-023-00993-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be Banach spaces. When A and B are linear relations in X and Y, respectively, we denote by MC the linear relation in X x Y of the form ((A C) (0 B)), where 0 is the zero operator from X to Y and C is a bounded operator from Y to X. In this paper, by using properties of the SVEP, we study the defect set (Sigma(A) boolean OR Sigma(B))\Sigma(M-C), where Sigma is the spectrum, the approximate point spectrum, the surjective spectrum, the Fredholm spectrum, the Weyl spectrum, the Browder spectrum, the generalized Drazin spectrum and the Drazin spectrum.
引用
收藏
页码:399 / 422
页数:24
相关论文
共 50 条
  • [1] Spectra for upper triangular linear relation matrices through local spectral theory
    Teresa Álvarez
    Sonia Keskes
    Aequationes mathematicae, 2024, 98 : 399 - 422
  • [2] Essential spectra of upper triangular relation matrices
    Yanyan Du
    Junjie Huang
    Monatshefte für Mathematik, 2023, 200 : 43 - 61
  • [3] Essential spectra of upper triangular relation matrices
    Du, Yanyan
    Huang, Junjie
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (01): : 43 - 61
  • [4] Perturbation of spectra for upper triangular relation matrices
    Wu, Xiufeng
    Chen, Alatancang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 19 (01)
  • [5] Spectral property of upper triangular relation matrices
    Du, Yanyan
    Huang, Junjie
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1526 - 1542
  • [6] The local spectral theory for upper triangular matrix linear relations involving SVEP
    Aymen Ammar
    Slim Fakhfakh
    Dorsaf Kouas
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 865 - 878
  • [7] The local spectral theory for upper triangular matrix linear relations involving SVEP
    Ammar, Aymen
    Fakhfakh, Slim
    Kouas, Dorsaf
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 865 - 878
  • [8] The spectral theory of upper triangular matrices with entries in a Banach algebra
    Barnes, BA
    MATHEMATISCHE NACHRICHTEN, 2002, 241 : 5 - 20
  • [9] Spectra of upper triangular operator matrices
    Benhida, C
    Zerouali, EH
    Zguitti, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 3013 - 3020
  • [10] Inverse Eigenvalue Problem for a Class of Upper Triangular Matrices with Linear Relation
    Li, Zhibin
    Li, Shuai
    MECHANICAL COMPONENTS AND CONTROL ENGINEERING III, 2014, 668-669 : 1068 - 1071