2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs

被引:0
|
作者
Douglas B. West
Xuding Zhu
机构
[1] Zhejiang Normal University,
[2] University of Illinois at Urbana–Champaign,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Reconstruction Conjecture; 2-reconstructibility; Strongly regular graph; Distance-regular graph; 2-partially distance-regular;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} vertices. For graphs with at least six vertices, we prove that all graphs in a family containing all strongly regular graphs and most 2-partially distance-regular graphs are 2-reconstructible.
引用
收藏
相关论文
共 50 条