2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs

被引:0
|
作者
Douglas B. West
Xuding Zhu
机构
[1] Zhejiang Normal University,
[2] University of Illinois at Urbana–Champaign,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Reconstruction Conjecture; 2-reconstructibility; Strongly regular graph; Distance-regular graph; 2-partially distance-regular;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} vertices. For graphs with at least six vertices, we prove that all graphs in a family containing all strongly regular graphs and most 2-partially distance-regular graphs are 2-reconstructible.
引用
收藏
相关论文
共 50 条
  • [21] On automorphisms of distance-regular graphs
    Makhnev A.A.
    Journal of Mathematical Sciences, 2010, 166 (6) : 733 - 742
  • [22] Edge-distance-regular graphs are distance-regular
    Camara, M.
    Dalfo, C.
    Delorme, C.
    Fiol, M. A.
    Suzuki, H.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (05) : 1057 - 1067
  • [23] On almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    Garriga, E.
    Gorissen, B. L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 1094 - 1113
  • [24] Two distance-regular graphs
    Brouwer, Andries E.
    Pasechnik, Dmitrii V.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (03) : 403 - 407
  • [25] A NOTE ON DISTANCE-REGULAR GRAPHS
    FISHER, PH
    ARS COMBINATORIA, 1988, 26A : 91 - 92
  • [26] REMARKS ON DISTANCE-REGULAR GRAPHS
    YOSHIZAWA, M
    DISCRETE MATHEMATICS, 1981, 34 (01) : 93 - 94
  • [27] Two distance-regular graphs
    Andries E. Brouwer
    Dmitrii V. Pasechnik
    Journal of Algebraic Combinatorics, 2012, 36 : 403 - 407
  • [28] On subgraphs in distance-regular graphs
    Koolen, J.H.
    Journal of Algebraic Combinatorics, 1992, 1 (04):
  • [29] EIGENVECTORS OF DISTANCE-REGULAR GRAPHS
    POWERS, DL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (03) : 399 - 407
  • [30] Shilla distance-regular graphs
    Koolen, Jack H.
    Park, Jongyook
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2064 - 2073