2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs

被引:0
|
作者
Douglas B. West
Xuding Zhu
机构
[1] Zhejiang Normal University,
[2] University of Illinois at Urbana–Champaign,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Reconstruction Conjecture; 2-reconstructibility; Strongly regular graph; Distance-regular graph; 2-partially distance-regular;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} vertices. For graphs with at least six vertices, we prove that all graphs in a family containing all strongly regular graphs and most 2-partially distance-regular graphs are 2-reconstructible.
引用
收藏
相关论文
共 50 条
  • [11] On distance-regular graphs in which neighborhoods of vertices are strongly regular
    Gavrilyuk, A. L.
    Makhnev, A. A.
    Paduchikh, D. V.
    DOKLADY MATHEMATICS, 2013, 88 (02) : 532 - 536
  • [12] Spectral classes of strongly-regular and distance-regular graphs
    Ghorbani, Ebrahim
    Koohestani, Masoumeh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 641 : 182 - 199
  • [13] On distance-regular graphs in which neighborhoods of vertices are strongly regular
    A. L. Gavrilyuk
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2013, 88 : 532 - 536
  • [14] On distance-regular graph Gamma with strongly regular graphs Gamma(2) and Gamma(3)
    Nirova, Marina Sefovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 175 - 185
  • [15] Distance-regular graphs
    van Dam, Edwin R.
    Koolen, Jack H.
    Tanaka, Hajime
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, : 1 - 156
  • [16] DISTANCE-REGULAR GRAPHS AND HALVED GRAPHS
    HEMMETER, J
    EUROPEAN JOURNAL OF COMBINATORICS, 1986, 7 (02) : 119 - 129
  • [17] On distance-regular graphs with c2 = 2
    Makhnev, Alexandr A.
    Nirova, Marina S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2021, 31 (06): : 397 - 401
  • [18] From regular boundary graphs to antipodal distance-regular graphs
    Fiol, MA
    Garriga, E
    Yebra, JLA
    JOURNAL OF GRAPH THEORY, 1998, 27 (03) : 123 - 140
  • [19] Some spectral characterizations of strongly distance-regular graphs
    Fiol, MA
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (02): : 127 - 135
  • [20] THE DISTANCE-REGULAR ANTIPODAL COVERS OF CLASSICAL DISTANCE-REGULAR GRAPHS
    VANBON, JTM
    BROUWER, AE
    COMBINATORICS /, 1988, 52 : 141 - 166