2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs

被引:0
|
作者
Douglas B. West
Xuding Zhu
机构
[1] Zhejiang Normal University,
[2] University of Illinois at Urbana–Champaign,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Reconstruction Conjecture; 2-reconstructibility; Strongly regular graph; Distance-regular graph; 2-partially distance-regular;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} vertices. For graphs with at least six vertices, we prove that all graphs in a family containing all strongly regular graphs and most 2-partially distance-regular graphs are 2-reconstructible.
引用
收藏
相关论文
共 50 条
  • [1] 2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs
    West, Douglas B.
    Zhu, Xuding
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [2] Distance-regular extensions of strongly regular graphs with eigenvalue 2
    I. N. Belousov
    A. A. Makhnev
    M. S. Nirova
    Doklady Mathematics, 2012, 86 : 816 - 819
  • [3] Distance-regular extensions of strongly regular graphs with eigenvalue 2
    Belousov, I. N.
    Makhnev, A. A.
    Nirova, M. S.
    DOKLADY MATHEMATICS, 2012, 86 (03) : 816 - 819
  • [4] The 2-partially distance-regular graphs such that their second largest local eigenvalues are at most one
    Zhang, Yuanjiang
    Liang, Xiaoye
    Koolen, Jack H.
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [5] ON Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS Γ WITH STRONGLY REGULAR GRAPHS Γ2 AND Γ3
    Belousov, Ivan Nikolaevich
    Makhnev, Aleksandr Alekseevich
    Nirova, Marina Sefovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1385 - 1392
  • [6] Distance-regular graphs with strongly regular subconstituents
    Kasikova, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (03) : 247 - 252
  • [7] Distance-regular graphs with strongly regular subconstituents
    J Algebraic Combinatorics, 3 (247):
  • [8] Distance-Regular Graphs with Strongly Regular Subconstituents
    Anna Kasikova
    Journal of Algebraic Combinatorics, 1997, 6 : 247 - 252
  • [9] On Distance-Regular Graphs with lambda = 2
    Makhnev, Alexander A.
    Nirova, Marina S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (02): : 204 - 210
  • [10] The metric dimension of small distance-regular and strongly regular graphs
    Bailey, Robert F.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 62 : 18 - 34