Four identities related to third-order mock theta functions

被引:0
|
作者
Su-Ping Cui
Nancy S. S. Gu
Chen-Yang Su
机构
[1] Qinghai Normal University,School of Mathematics and Statistics
[2] Academy of Plateau Science and Sustainability,Center for Combinatorics
[3] LPMC,undefined
[4] Nankai University,undefined
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Universal mock theta function; Theta function; Mock theta function; Appell–Lerch sum; 11B65; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
Ramanujan presented four identities for third-order mock theta functions in his Lost Notebook. In 2005, with the aid of complex analysis, Yesilyurt first proved these four identities. Recently, Andrews et al. proved these identities by using q-series. In this paper, using some identities for the universal mock theta function g(x;q)=x-1-1+∑n=0∞qn2(x;q)n+1(qx-1;q)n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x;q)=x^{-1}\left( -1+\sum _{n=0}^{\infty }\frac{q^{n^{2}}}{(x;q)_{n+1}(qx^{-1};q)_{n}}\right) , \end{aligned}$$\end{document}we provide different proofs of these four identities.
引用
收藏
页码:929 / 941
页数:12
相关论文
共 50 条
  • [41] On two 10th-order mock theta identities
    Lovejoy, Jeremy
    Osburn, Robert
    RAMANUJAN JOURNAL, 2015, 36 (1-2): : 117 - 121
  • [42] New Fifth and Seventh Order Mock Theta Function Identities
    Frank G. Garvan
    Annals of Combinatorics, 2019, 23 : 765 - 783
  • [43] CERTAIN BASIC HYPERGEOMETRIC IDENTITIES ASSOCIATED WITH MOCK THETA FUNCTIONS
    AGARWAL, RP
    QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (77): : 121 - &
  • [44] On two 10th-order mock theta identities
    Jeremy Lovejoy
    Robert Osburn
    The Ramanujan Journal, 2015, 36 : 117 - 121
  • [45] Symmetric relations related to mock theta functions
    Wang, Chun
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [46] Partitions associated with two fifth-order mock theta functions and Beck-type identities
    Li, Runqiao
    Wang, Andrew Y. Z.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 841 - 855
  • [47] On partial sums of mock theta functions of order three
    Srivastava, AK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (01): : 1 - 12
  • [48] MOCK THETA FUNCTIONS OF ORDER 2 AND THEIR SHADOW COMPUTATIONS
    Kang, Soon-Yi
    Swisher, Holly
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 2155 - 2163
  • [49] On partial sums of mock theta functions of order three
    Anand Kumar Srivastava
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1997, 107 : 1 - 12
  • [50] A NEW SPECTRUM OF MOCK THETA FUNCTIONS OF ORDER TWO
    Srivastava, Pankaj
    Wahidi, Anwar Jahan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2012, 3 (04): : 59 - 66