Four identities related to third-order mock theta functions

被引:0
|
作者
Su-Ping Cui
Nancy S. S. Gu
Chen-Yang Su
机构
[1] Qinghai Normal University,School of Mathematics and Statistics
[2] Academy of Plateau Science and Sustainability,Center for Combinatorics
[3] LPMC,undefined
[4] Nankai University,undefined
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Universal mock theta function; Theta function; Mock theta function; Appell–Lerch sum; 11B65; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
Ramanujan presented four identities for third-order mock theta functions in his Lost Notebook. In 2005, with the aid of complex analysis, Yesilyurt first proved these four identities. Recently, Andrews et al. proved these identities by using q-series. In this paper, using some identities for the universal mock theta function g(x;q)=x-1-1+∑n=0∞qn2(x;q)n+1(qx-1;q)n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x;q)=x^{-1}\left( -1+\sum _{n=0}^{\infty }\frac{q^{n^{2}}}{(x;q)_{n+1}(qx^{-1};q)_{n}}\right) , \end{aligned}$$\end{document}we provide different proofs of these four identities.
引用
收藏
页码:929 / 941
页数:12
相关论文
共 50 条
  • [31] Some eighth order mock theta functions
    Gordon, B
    McIntosh, RJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 321 - 335
  • [32] On three third order mock theta functions and Hecke-type double sums
    Eric Mortenson
    The Ramanujan Journal, 2013, 30 : 279 - 308
  • [33] On two fifth order mock theta functions
    Zwegers, Sander
    RAMANUJAN JOURNAL, 2009, 20 (02): : 207 - 214
  • [34] On second and eighth order mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Hao, Li-Jun
    RAMANUJAN JOURNAL, 2019, 50 (02): : 393 - 422
  • [35] ON THE TENTH-ORDER MOCK THETA FUNCTIONS
    Mortenson, Eric T.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (01) : 44 - 62
  • [36] Congruences for partition functions related to mock theta functions
    Chern, Shane
    Hao, Li-Jun
    RAMANUJAN JOURNAL, 2019, 48 (02): : 369 - 384
  • [37] Congruences for partition functions related to mock theta functions
    Shane Chern
    Li-Jun Hao
    The Ramanujan Journal, 2019, 48 : 369 - 384
  • [38] On the Andrews-Yee Identities Associated with Mock Theta Functions
    Wang, Jin
    Ma, Xinrong
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 1105 - 1122
  • [39] Some identities associated with mock theta functions (q) and (q)
    Andrews, George E.
    Yee, Ae Ja
    RAMANUJAN JOURNAL, 2019, 48 (03): : 613 - 622
  • [40] New Fifth and Seventh Order Mock Theta Function Identities
    Garvan, Frank G.
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 765 - 783