Four identities related to third-order mock theta functions

被引:0
|
作者
Su-Ping Cui
Nancy S. S. Gu
Chen-Yang Su
机构
[1] Qinghai Normal University,School of Mathematics and Statistics
[2] Academy of Plateau Science and Sustainability,Center for Combinatorics
[3] LPMC,undefined
[4] Nankai University,undefined
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Universal mock theta function; Theta function; Mock theta function; Appell–Lerch sum; 11B65; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
Ramanujan presented four identities for third-order mock theta functions in his Lost Notebook. In 2005, with the aid of complex analysis, Yesilyurt first proved these four identities. Recently, Andrews et al. proved these identities by using q-series. In this paper, using some identities for the universal mock theta function g(x;q)=x-1-1+∑n=0∞qn2(x;q)n+1(qx-1;q)n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x;q)=x^{-1}\left( -1+\sum _{n=0}^{\infty }\frac{q^{n^{2}}}{(x;q)_{n+1}(qx^{-1};q)_{n}}\right) , \end{aligned}$$\end{document}we provide different proofs of these four identities.
引用
收藏
页码:929 / 941
页数:12
相关论文
共 50 条
  • [21] Second order mock theta functions
    McIntosh, Richard J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (02): : 284 - 290
  • [22] Sixth order mock theta functions
    Berndt, Bruce C.
    Chan, Song Heng
    ADVANCES IN MATHEMATICS, 2007, 216 (02) : 771 - 786
  • [23] Some identities and generating functions of third-order recurrence relations
    Boubellouta, Khadidja
    Boussayoud, Ali
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 826 - 842
  • [24] On the Andrews–Yee Identities Associated with Mock Theta Functions
    Jin Wang
    Xinrong Ma
    Annals of Combinatorics, 2019, 23 : 1105 - 1122
  • [25] Families of identities involving universal mock theta functions
    Song, Hanfei
    Wang, Chun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (06) : 1453 - 1472
  • [26] MOCK THETA FUNCTIONS AND RELATED COMBINATORICS
    Ballantine, Cristina
    Burson, Hannah
    Folsom, Amanda
    Hsu, Chi-Yun
    Negrini, Isabella
    Wen, Boya
    arXiv, 2022,
  • [27] On three third order mock theta functions and Hecke-type double sums
    Mortenson, Eric
    RAMANUJAN JOURNAL, 2013, 30 (02): : 279 - 308
  • [28] The Fourth and Eighth Order Mock Theta Functions
    Srivastava, Bhaskar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 165 - 175
  • [29] On second and eighth order mock theta functions
    Su-Ping Cui
    Nancy S. S. Gu
    Li-Jun Hao
    The Ramanujan Journal, 2019, 50 : 393 - 422
  • [30] On two fifth order mock theta functions
    Sander Zwegers
    The Ramanujan Journal, 2009, 20 : 207 - 214