Four identities related to third-order mock theta functions

被引:0
|
作者
Su-Ping Cui
Nancy S. S. Gu
Chen-Yang Su
机构
[1] Qinghai Normal University,School of Mathematics and Statistics
[2] Academy of Plateau Science and Sustainability,Center for Combinatorics
[3] LPMC,undefined
[4] Nankai University,undefined
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Universal mock theta function; Theta function; Mock theta function; Appell–Lerch sum; 11B65; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
Ramanujan presented four identities for third-order mock theta functions in his Lost Notebook. In 2005, with the aid of complex analysis, Yesilyurt first proved these four identities. Recently, Andrews et al. proved these identities by using q-series. In this paper, using some identities for the universal mock theta function g(x;q)=x-1-1+∑n=0∞qn2(x;q)n+1(qx-1;q)n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x;q)=x^{-1}\left( -1+\sum _{n=0}^{\infty }\frac{q^{n^{2}}}{(x;q)_{n+1}(qx^{-1};q)_{n}}\right) , \end{aligned}$$\end{document}we provide different proofs of these four identities.
引用
收藏
页码:929 / 941
页数:12
相关论文
共 50 条
  • [1] Four identities related to third-order mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Su, Chen-Yang
    RAMANUJAN JOURNAL, 2021, 55 (03): : 929 - 941
  • [2] FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS
    Andrews, George E.
    Berndt, Bruce C.
    Chan, Song Heng
    Kim, Sun
    Malik, Amita
    NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 173 - 204
  • [3] Third-order mock theta functions
    Hu, Qiuxia
    Song, Hanfei
    Zhang, Zhizheng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (01) : 91 - 106
  • [4] PARTITION IDENTITIES FOR RAMANUJAN'S THIRD-ORDER MOCK THETA FUNCTIONS
    Chen, William Y. C.
    Ji, Kathy Q.
    Liu, Eric H.
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (02): : 353 - 365
  • [5] Four identities related to third order mock theta functions in Ramanujan's lost notebook
    Yesilyurt, H
    ADVANCES IN MATHEMATICS, 2005, 190 (02) : 278 - 299
  • [6] ON GENERALIZATIONS OF THEOREMS INVOLVING THE THIRD-ORDER MOCK THETA FUNCTIONS
    Hu, Qiuxia
    Zhang, Zhizheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (01) : 125 - 132
  • [7] Partition identities from third and sixth order mock theta functions
    Choi, Youn-Seo
    Kim, Byungchan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (08) : 1739 - 1754
  • [8] Combinatorial identities for tenth order mock theta functions
    Megha Goyal
    M Rana
    Proceedings - Mathematical Sciences, 2019, 129
  • [9] ON IDENTITIES INVOLVING THE SIXTH ORDER MOCK THETA FUNCTIONS
    Lovejoy, Jeremy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) : 2547 - 2552
  • [10] Combinatorial identities for tenth order mock theta functions
    Goyal, Megha
    Rana, M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (03):