First- and Second-Order Phase Transition in Parallel Triple Quantum Dots: The Roles of Symmetric and Asymmetric Hopping

被引:0
|
作者
Yong-Chen Xiong
机构
[1] Hubei University of Automotive Technology,School of Science
来源
关键词
Quantum phase transition; Kondo effect; Triple quantum dots; Numerical renormalization group;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the numerical renormalization group method, I study the quantum phase transition (QPT) and the electronic transport in parallel triple quantum dot system with symmetric and/or asymmetric hopping. For symmetric hopping t1=t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} = t_{2}$$\end{document} and zero magnetic field B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B = 0$$\end{document}, I find a first order transition between spin quadruplet and doublet as t1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1}$$\end{document} (t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document}) increases. With increasing B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, a second order QPT between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} of the doublet and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} of the quadruplet is observed. For asymmetric hopping t1≠t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ne t_{2}$$\end{document}, the QPT depends closely on the other hopping. For fixed t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} is the hybridization function between the dots and the leads, a first order transition is observed as t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document} increases, while for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}, a crossover occurs. In the presence of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, the transition between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} is a first order QPT for t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, while a second order for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}.
引用
收藏
页码:115 / 132
页数:17
相关论文
共 50 条
  • [41] Theoretical investigation of the barocaloric effect in spin-crossover systems upon first- and second-order phase transition conversion
    Ribeiro, P. O.
    Alho, B. P.
    Nobrega, E. P.
    de Sousa, V. S. R.
    Carvalho, A. M. G.
    von Ranke, P. J.
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (12)
  • [42] Forest insect populations: Modeling of critical events as first- and second-order phase transitions
    Soukhovolsky, V. G.
    Tarasova, O. V.
    Kovalev, A. V.
    Ivanova, Yu. D.
    Pavlushin, S. V.
    Akhanaev, Y. B.
    Martemyanov, V. V.
    ECOLOGICAL MODELLING, 2025, 504
  • [43] A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies
    Amaral, J. S.
    Silva, N. J. O.
    Amaral, V. S.
    APPLIED PHYSICS LETTERS, 2007, 91 (17)
  • [44] Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions
    Valiev, E. Z.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 108 (02) : 279 - 285
  • [45] Lattice distortion induced first- and second-order topological phase transition in a rectangular high-Tc superconducting monolayer
    Chen, Li
    Liu, Bin
    Xu, Gang
    Liu, Xin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [46] Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions
    É. Z. Valiev
    Journal of Experimental and Theoretical Physics, 2009, 108 : 279 - 285
  • [47] Phase-Dependent Interactions in Visual Cortex to Combinations of First- and Second-Order Stimuli
    Hutchinson, Claire V.
    Ledgeway, Timothy
    Baker, Curtis L., Jr.
    JOURNAL OF NEUROSCIENCE, 2016, 36 (49): : 12328 - 12337
  • [48] Holstein polaron in a pseudospin-1 quantum spin Hall system: First- and second-order topological phase transitions
    Bhattacharyya, Kuntal
    Lahiri, Srijata
    Islam, Mijanur
    Basu, Saurabh
    PHYSICAL REVIEW B, 2024, 110 (23)
  • [49] First-order Reversal Curve Analysis of Kinetic Monte Carlo Simulations of First- and Second-order Phase Transitions
    Hamad, I. A.
    Robb, D.
    Rikvold, P. A.
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XIX, 2009, 123 : 89 - +
  • [50] Nuclear inelastic scattering studies of lattice dynamics in magnetite with a first- and second-order Verwey transition
    Kolodziej, Tomasz
    Kozlowski, Andrzej
    Piekarz, Przemyslaw
    Tabis, Wojciech
    Kakol, Zbigniew
    Zajac, Marcin
    Tarnawski, Zbigniew
    Honig, Juergen M.
    Oles, Andrzej M.
    Parlinski, Krzysztof
    PHYSICAL REVIEW B, 2012, 85 (10):