First- and Second-Order Phase Transition in Parallel Triple Quantum Dots: The Roles of Symmetric and Asymmetric Hopping

被引:0
|
作者
Yong-Chen Xiong
机构
[1] Hubei University of Automotive Technology,School of Science
来源
关键词
Quantum phase transition; Kondo effect; Triple quantum dots; Numerical renormalization group;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the numerical renormalization group method, I study the quantum phase transition (QPT) and the electronic transport in parallel triple quantum dot system with symmetric and/or asymmetric hopping. For symmetric hopping t1=t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} = t_{2}$$\end{document} and zero magnetic field B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B = 0$$\end{document}, I find a first order transition between spin quadruplet and doublet as t1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1}$$\end{document} (t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document}) increases. With increasing B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, a second order QPT between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} of the doublet and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} of the quadruplet is observed. For asymmetric hopping t1≠t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ne t_{2}$$\end{document}, the QPT depends closely on the other hopping. For fixed t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} is the hybridization function between the dots and the leads, a first order transition is observed as t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document} increases, while for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}, a crossover occurs. In the presence of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, the transition between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} is a first order QPT for t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, while a second order for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}.
引用
收藏
页码:115 / 132
页数:17
相关论文
共 50 条
  • [31] A working mechanical model for first- and second-order phase transitions and the cusp catastrophe
    Mancuso, RV
    AMERICAN JOURNAL OF PHYSICS, 2000, 68 (03) : 271 - 277
  • [32] Dynamics of first- and second-order phase transitions in amorphous magnetooptic TbFeCo films
    M. B. Agranat
    S. I. Anhitkov
    A. V. Kirillin
    V. E. Fortov
    S. I. Anislmov
    A. B. Granovskiį
    P. S. Kondratenko
    JETP Letters, 1998, 67
  • [33] First- and Second-Order Superconducting Phase Transitions of Tin Whiskers in a Magnetic Field
    McLachlan, D. S.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1972, 6 (3-4) : 385 - 395
  • [34] First- and second-order diatomic-to-monatomic phase transitions in a model crystal
    Lacks, DJ
    Kottemann, M
    Yuan, D
    CHEMICAL PHYSICS LETTERS, 2001, 347 (1-3) : 178 - 182
  • [35] Dynamics of first- and second-order phase transitions in amorphous magnetooptic TbFeCo films
    Agranat, MB
    Ashitkov, SI
    Kirillin, AV
    Fortov, VE
    Anisimov, SI
    Granovskii, AB
    Kondratenko, PS
    JETP LETTERS, 1998, 67 (11) : 953 - 958
  • [36] Majorana bound states and phase transitions in first- and second-order topological superconductors
    Yuan, Xiang-Nan
    Xie, Yue
    Zha, Guo-Qiao
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (10):
  • [37] First- and second-order phase transitions from free flow to synchronized flow
    Jiang, R
    Wu, QS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) : 676 - 684
  • [38] First- and second-order phase transitions between quantum and classical regimes for the escape rate of a biaxial spin system
    Kim, GH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 34 : S185 - S188
  • [39] Level statistics of multispin-coupling models with first- and second-order phase transitions
    d'Auriac, JCA
    Igloi, F
    PHYSICAL REVIEW E, 1998, 58 (01): : 241 - 246
  • [40] First- and second-order energy stable methods for the modified phase field crystal equation
    Lee, Hyun Geun
    Shin, Jaemin
    Lee, June-Yub
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 1 - 17