First- and Second-Order Phase Transition in Parallel Triple Quantum Dots: The Roles of Symmetric and Asymmetric Hopping

被引:0
|
作者
Yong-Chen Xiong
机构
[1] Hubei University of Automotive Technology,School of Science
来源
关键词
Quantum phase transition; Kondo effect; Triple quantum dots; Numerical renormalization group;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the numerical renormalization group method, I study the quantum phase transition (QPT) and the electronic transport in parallel triple quantum dot system with symmetric and/or asymmetric hopping. For symmetric hopping t1=t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} = t_{2}$$\end{document} and zero magnetic field B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B = 0$$\end{document}, I find a first order transition between spin quadruplet and doublet as t1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1}$$\end{document} (t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document}) increases. With increasing B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, a second order QPT between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} of the doublet and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} of the quadruplet is observed. For asymmetric hopping t1≠t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ne t_{2}$$\end{document}, the QPT depends closely on the other hopping. For fixed t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} is the hybridization function between the dots and the leads, a first order transition is observed as t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document} increases, while for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}, a crossover occurs. In the presence of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, the transition between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} is a first order QPT for t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, while a second order for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}.
引用
收藏
页码:115 / 132
页数:17
相关论文
共 50 条
  • [21] First- and second-order phase transitions in the Holstein-Hubbard model
    Koller, W
    Meyer, D
    Ono, Y
    Hewson, AC
    EUROPHYSICS LETTERS, 2004, 66 (04): : 559 - 564
  • [22] Identification of first- and second-order magnetic phase transitions in ferromagnetic perovskites
    Mira, J
    Rivas, J
    Rivadulla, F
    Quintela, MAL
    PHYSICA B-CONDENSED MATTER, 2002, 320 (1-4) : 23 - 25
  • [23] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    K. W. Post
    A. S. McLeod
    M. Hepting
    M. Bluschke
    Yifan Wang
    G. Cristiani
    G. Logvenov
    A. Charnukha
    G. X. Ni
    Padma Radhakrishnan
    M. Minola
    A. Pasupathy
    A. V. Boris
    E. Benckiser
    K. A. Dahmen
    E. W. Carlson
    B. Keimer
    D. N. Basov
    Nature Physics, 2018, 14 : 1056 - 1061
  • [24] Photoacoustic investigation of first- and second-order phase transitions in molecular crystals
    Bonno, B.
    Laporte, J.L.
    Rousset, Y.
    1982, (75):
  • [25] First- and second-order phase transitions in the adlayer of biadipate on Au(111)
    Doneux, Th.
    Nichols, R. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (04) : 688 - 693
  • [26] Analytical study of factorial moments for first- and second-order phase transitions
    Cai, X
    Yang, CB
    Zhou, ZM
    PHYSICAL REVIEW C, 1996, 54 (05): : 2775 - 2778
  • [27] Predicting the magnetic measurements of first- and second-order phase transition magnetocaloric materials with artificial neural networks
    Pinto, R. M. C.
    Belo, J. H.
    Araujo, J. P.
    Silva, D. J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 562
  • [28] First- and second-order quantum phase transitions of a q-state Potts model in fractal lattices
    Yi, Hangmo
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [29] First- and second-order quantum phase transitions in the long-range unfrustrated antiferromagnetic Ising chain
    Herraiz-Lopez, Victor
    Roca-Jerat, Sebastian
    Gallego, Manuel
    Ferrandez, Ramon
    Carrete, Jesus
    Zueco, David
    Roman-Roche, Juan
    PHYSICAL REVIEW B, 2025, 111 (01)
  • [30] Crossover from first- to second-order transition in frustrated Ising antiferromagnetic films
    Phu, X. T. Pham
    Ngo, V. Thanh
    Diep, H. T.
    PHYSICAL REVIEW E, 2009, 79 (06):