First- and Second-Order Phase Transition in Parallel Triple Quantum Dots: The Roles of Symmetric and Asymmetric Hopping

被引:0
|
作者
Yong-Chen Xiong
机构
[1] Hubei University of Automotive Technology,School of Science
来源
关键词
Quantum phase transition; Kondo effect; Triple quantum dots; Numerical renormalization group;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the numerical renormalization group method, I study the quantum phase transition (QPT) and the electronic transport in parallel triple quantum dot system with symmetric and/or asymmetric hopping. For symmetric hopping t1=t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} = t_{2}$$\end{document} and zero magnetic field B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B = 0$$\end{document}, I find a first order transition between spin quadruplet and doublet as t1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1}$$\end{document} (t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document}) increases. With increasing B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, a second order QPT between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} of the doublet and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} of the quadruplet is observed. For asymmetric hopping t1≠t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ne t_{2}$$\end{document}, the QPT depends closely on the other hopping. For fixed t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} is the hybridization function between the dots and the leads, a first order transition is observed as t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{2}$$\end{document} increases, while for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}, a crossover occurs. In the presence of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, the transition between Sz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 1/2$$\end{document} and Sz=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{z} = 3/2$$\end{document} is a first order QPT for t1<Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} < \varGamma $$\end{document}, while a second order for t1≥Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{1} \ge \varGamma $$\end{document}.
引用
收藏
页码:115 / 132
页数:17
相关论文
共 50 条
  • [1] First- and Second-Order Phase Transition in Parallel Triple Quantum Dots: The Roles of Symmetric and Asymmetric Hopping
    Xiong, Yong-Chen
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 177 (3-4) : 115 - 132
  • [2] Diagnosing first- and second-order phase transitions with probes of quantum chaos
    Huh, Kyoung-Bum
    Ikeda, Kazuki
    Jahnke, Viktor
    Kim, Keun-Young
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [3] Exceptional points near first- and second-order quantum phase transitions
    Stransky, Pavel
    Dvorak, Martin
    Cejnar, Pavel
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [4] Microkinetics of the first- and second-order phase transitions
    Stepanov, VA
    PHASE TRANSITIONS, 2005, 78 (7-8) : 607 - 619
  • [5] Millisecond Dynamics of the Magnetocaloric Effect in a First- and Second-Order Phase Transition Material
    Doentgen, Jago
    Rudolph, Jorg
    Gottschall, Tino
    Gutfleisch, Oliver
    Haegele, Daniel
    ENERGY TECHNOLOGY, 2018, 6 (08) : 1470 - 1477
  • [6] A mechanical analog of first- and second-order phase transitions
    Fletcher, G
    AMERICAN JOURNAL OF PHYSICS, 1997, 65 (01) : 74 - 81
  • [7] The Analytical Resolution of Parallel First- and Second-Order Reaction Mechanisms
    Caballero, N. B.
    Croce, A. E.
    Pensa, E.
    Irrazabal, C. Vicente
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2010, 42 (09) : 562 - 566
  • [8] Switch energy requirements for first- and second-order perturbations in asymmetric quantum box optical switches
    Palm, T
    Thylen, L
    Nilsson, O
    Sahlen, O
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (04) : 562 - 565
  • [9] FIRST- OR SECOND-ORDER TRANSITION IN THE MELTING OF REPEAT SEQUENCE DNA
    CHEN, YZ
    PROHOFSKY, EW
    BIOPHYSICAL JOURNAL, 1994, 66 (01) : 202 - 206
  • [10] The Face Inversion Effect: Roles of First- and Second-Order Configural Information
    Civile, Ciro
    McLaren, Rossy
    McLaren, Ian P. L.
    AMERICAN JOURNAL OF PSYCHOLOGY, 2016, 129 (01): : 23 - 35