Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces

被引:0
|
作者
Shisheng Cui
Uday Shanbhag
Mathias Staudigl
Phan Vuong
机构
[1] Pennsylvania State University,Department of Industrial and Manufacturing Engineering
[2] Maastricht University,Department of Advanced Computing Sciences (DACS)
[3] University of Southampton,Mathematical Sciences
关键词
Monotone operator splitting; Stochastic approximation; Complexity; Variance reduction; Dynamic sampling;
D O I
暂无
中图分类号
学科分类号
摘要
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator T and a single-valued monotone, Lipschitz continuous, and expectation-valued operator V. We draw motivation from the seminal work by Attouch and Cabot (Attouch in AMO 80:547–598, 2019, Attouch in MP 184: 243–287) on relaxed inertial methods for monotone inclusions and present a stochastic extension of the relaxed inertial forward–backward-forward method. Facilitated by an online variance reduction strategy via a mini-batch approach, we show that our method produces a sequence that weakly converges to the solution set. Moreover, it is possible to estimate the rate at which the discrete velocity of the stochastic process vanishes. Under strong monotonicity, we demonstrate strong convergence, and give a detailed assessment of the iteration and oracle complexity of the scheme. When the mini-batch is raised at a geometric (polynomial) rate, the rate statement can be strengthened to a linear (suitable polynomial) rate while the oracle complexity of computing an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution improves to O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\epsilon )$$\end{document}. Importantly, the latter claim allows for possibly biased oracles, a key theoretical advancement allowing for far broader applicability. By defining a restricted gap function based on the Fitzpatrick function, we prove that the expected gap of an averaged sequence diminishes at a sublinear rate of O(1/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/k)$$\end{document} while the oracle complexity of computing a suitably defined ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution is O(1/ϵ1+a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\epsilon ^{1+a})$$\end{document} where a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 1$$\end{document}. Numerical results on two-stage games and an overlapping group Lasso problem illustrate the advantages of our method compared to competitors.
引用
收藏
页码:465 / 524
页数:59
相关论文
共 50 条
  • [41] On a pseudoparabolic regularization of a forward-backward-forward equation
    Bertsch, Michiel
    Smarrazzo, Flavia
    Tesei, Alberto
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 : 217 - 257
  • [42] Variable metric forward-backward splitting with applications to monotone inclusions in duality
    Combettes, Patrick L.
    Vu, Bang C.
    [J]. OPTIMIZATION, 2014, 63 (09) : 1289 - 1318
  • [43] An inertial based forward–backward algorithm for monotone inclusion problems and split mixed equilibrium problems in Hilbert spaces
    Yasir Arfat
    Poom Kumam
    Parinya Sa Ngiamsunthorn
    Muhammad Aqeel Ahmad Khan
    [J]. Advances in Difference Equations, 2020
  • [44] Forward–Partial Inverse–Forward Splitting for Solving Monotone Inclusions
    Luis M. Briceño-Arias
    [J]. Journal of Optimization Theory and Applications, 2015, 166 : 391 - 413
  • [45] Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions
    Cevher, Volkan
    Vu, Bang Cong
    Yurtsever, Alp
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 149 - 179
  • [46] An inertially constructed forward-backward splitting algorithm in Hilbert spaces
    Arfat, Yasir
    Kumam, Poom
    Khan, Muhammad Aqeel Ahmad
    Ngiamsunthorn, Parinya Sa
    Kaewkhao, Attapol
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [47] FORWARD-BACKWARD-HALF FORWARD ALGORITHM FOR SOLVING MONOTONE INCLUSIONS
    Briceno-Arias, Luis M.
    Davis, Damek
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 2839 - 2871
  • [48] A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions
    Dong, Qiaoli
    Jiang, Dan
    Cholamjiak, Prasit
    Shehu, Yekini
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 3097 - 3118
  • [49] An inertial based forward-backward algorithm for monotone inclusion problems and split mixed equilibrium problems in Hilbert spaces
    Arfat, Yasir
    Kumam, Poom
    Ngiamsunthorn, Parinya Sa
    Khan, Muhammad Aqeel Ahmad
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [50] A Primal-dual Backward Reflected Forward Splitting Algorithm for Structured Monotone Inclusions
    Bang, Vu Cong
    Papadimitriou, Dimitri
    Nham, Vu Xuan
    [J]. ACTA MATHEMATICA VIETNAMICA, 2024, 49 (02) : 159 - 172