Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces

被引:0
|
作者
Shisheng Cui
Uday Shanbhag
Mathias Staudigl
Phan Vuong
机构
[1] Pennsylvania State University,Department of Industrial and Manufacturing Engineering
[2] Maastricht University,Department of Advanced Computing Sciences (DACS)
[3] University of Southampton,Mathematical Sciences
关键词
Monotone operator splitting; Stochastic approximation; Complexity; Variance reduction; Dynamic sampling;
D O I
暂无
中图分类号
学科分类号
摘要
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator T and a single-valued monotone, Lipschitz continuous, and expectation-valued operator V. We draw motivation from the seminal work by Attouch and Cabot (Attouch in AMO 80:547–598, 2019, Attouch in MP 184: 243–287) on relaxed inertial methods for monotone inclusions and present a stochastic extension of the relaxed inertial forward–backward-forward method. Facilitated by an online variance reduction strategy via a mini-batch approach, we show that our method produces a sequence that weakly converges to the solution set. Moreover, it is possible to estimate the rate at which the discrete velocity of the stochastic process vanishes. Under strong monotonicity, we demonstrate strong convergence, and give a detailed assessment of the iteration and oracle complexity of the scheme. When the mini-batch is raised at a geometric (polynomial) rate, the rate statement can be strengthened to a linear (suitable polynomial) rate while the oracle complexity of computing an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution improves to O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\epsilon )$$\end{document}. Importantly, the latter claim allows for possibly biased oracles, a key theoretical advancement allowing for far broader applicability. By defining a restricted gap function based on the Fitzpatrick function, we prove that the expected gap of an averaged sequence diminishes at a sublinear rate of O(1/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/k)$$\end{document} while the oracle complexity of computing a suitably defined ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution is O(1/ϵ1+a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\epsilon ^{1+a})$$\end{document} where a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 1$$\end{document}. Numerical results on two-stage games and an overlapping group Lasso problem illustrate the advantages of our method compared to competitors.
引用
收藏
页码:465 / 524
页数:59
相关论文
共 50 条
  • [31] On the inertial forward-backward splitting technique for solving a system of inclusion problems in Hilbert spaces
    Chang, Shih-sen
    Yao, Jen-Chih
    Wang, Lin
    Liu, Min
    Zhao, Liangcai
    [J]. OPTIMIZATION, 2021, 70 (12) : 2511 - 2525
  • [32] A FORWARD-BACKWARD SPLITTING METHOD FOR MONOTONE INCLUSIONS WITHOUT COCOERCIVITY
    Malitsky, Yura
    Tam, Matthew K.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1451 - 1472
  • [33] An inertially constructed forward–backward splitting algorithm in Hilbert spaces
    Yasir Arfat
    Poom Kumam
    Muhammad Aqeel Ahmad Khan
    Parinya Sa Ngiamsunthorn
    Attapol Kaewkhao
    [J]. Advances in Difference Equations, 2021
  • [34] Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces
    Abbas, B.
    Attouch, H.
    Svaiter, Benar F.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (02) : 331 - 360
  • [35] Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces
    B. Abbas
    H. Attouch
    Benar F. Svaiter
    [J]. Journal of Optimization Theory and Applications, 2014, 161 : 331 - 360
  • [36] Inertial viscosity forward-backward splitting algorithm for monotone inclusions and its application to image restoration problems
    Kitkuan, Duangkamon
    Kumam, Poom
    Martinez-Moreno, Juan
    Sitthithakerngkiet, Kanokwan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (1-2) : 482 - 497
  • [37] Strong convergence of inertial forward-backward methods for solving monotone inclusions
    Tan, Bing
    Cho, Sun Young
    [J]. APPLICABLE ANALYSIS, 2022, 101 (15) : 5386 - 5414
  • [38] A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions
    Qiaoli Dong
    Dan Jiang
    Prasit Cholamjiak
    Yekini Shehu
    [J]. Journal of Fixed Point Theory and Applications, 2017, 19 : 3097 - 3118
  • [39] Convergent Noisy forward-backward-forward algorithms in non-monotone variational inequalities
    Staudigl, Mathias
    Mertikopoulos, Panayotis
    [J]. IFAC PAPERSONLINE, 2019, 52 (03): : 120 - 125
  • [40] Relaxed Forward-Backward Splitting Methods for Solving Variational Inclusions and Applications
    Cholamjiak, Prasit
    Dang Van Hieu
    Cho, Yeol Je
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)