Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces

被引:0
|
作者
Shisheng Cui
Uday Shanbhag
Mathias Staudigl
Phan Vuong
机构
[1] Pennsylvania State University,Department of Industrial and Manufacturing Engineering
[2] Maastricht University,Department of Advanced Computing Sciences (DACS)
[3] University of Southampton,Mathematical Sciences
关键词
Monotone operator splitting; Stochastic approximation; Complexity; Variance reduction; Dynamic sampling;
D O I
暂无
中图分类号
学科分类号
摘要
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator T and a single-valued monotone, Lipschitz continuous, and expectation-valued operator V. We draw motivation from the seminal work by Attouch and Cabot (Attouch in AMO 80:547–598, 2019, Attouch in MP 184: 243–287) on relaxed inertial methods for monotone inclusions and present a stochastic extension of the relaxed inertial forward–backward-forward method. Facilitated by an online variance reduction strategy via a mini-batch approach, we show that our method produces a sequence that weakly converges to the solution set. Moreover, it is possible to estimate the rate at which the discrete velocity of the stochastic process vanishes. Under strong monotonicity, we demonstrate strong convergence, and give a detailed assessment of the iteration and oracle complexity of the scheme. When the mini-batch is raised at a geometric (polynomial) rate, the rate statement can be strengthened to a linear (suitable polynomial) rate while the oracle complexity of computing an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution improves to O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\epsilon )$$\end{document}. Importantly, the latter claim allows for possibly biased oracles, a key theoretical advancement allowing for far broader applicability. By defining a restricted gap function based on the Fitzpatrick function, we prove that the expected gap of an averaged sequence diminishes at a sublinear rate of O(1/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/k)$$\end{document} while the oracle complexity of computing a suitably defined ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution is O(1/ϵ1+a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\epsilon ^{1+a})$$\end{document} where a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 1$$\end{document}. Numerical results on two-stage games and an overlapping group Lasso problem illustrate the advantages of our method compared to competitors.
引用
收藏
页码:465 / 524
页数:59
相关论文
共 50 条
  • [1] Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces
    Cui, Shisheng
    Shanbhag, Uday
    Staudigl, Mathias
    Vuong, Phan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (02) : 465 - 524
  • [2] A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs
    Bot, Radu I.
    Sedlmayer, Michael
    Vuong, Phan Tu
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [3] Forward-backward-forward algorithms involving two inertial terms for monotone inclusions
    Suantai, Suthep
    Inkrong, Papatsara
    Cholamjiak, Prasit
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [4] Stochastic Forward–Backward Splitting for Monotone Inclusions
    Lorenzo Rosasco
    Silvia Villa
    Bang Công Vũ
    [J]. Journal of Optimization Theory and Applications, 2016, 169 : 388 - 406
  • [5] A stochastic inertial forward-backward splitting algorithm for multivariate monotone inclusions
    Rosasco, Lorenzo
    Villa, Silvia
    Vu, Bang Cong
    [J]. OPTIMIZATION, 2016, 65 (06) : 1293 - 1314
  • [6] ALTERNATED INERTIAL FORWARD-BACKWARD-FORWARD SPLITTING ALGORITHM
    Matsushita, Shin-ya
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (02): : 404 - 420
  • [7] Stochastic Forward-Backward Splitting for Monotone Inclusions
    Rosasco, Lorenzo
    Villa, Silvia
    Vu, Bang Cong
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (02) : 388 - 406
  • [8] A relaxed-inertial forward-backward-forward algorithm for stochastic generalized Nash equilibrium seeking
    Cui, Shisheng
    Franci, Barbara
    Grammatico, Sergio
    Shanbhag, Uday, V
    Staudigl, Mathias
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 197 - 202
  • [9] Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions
    Hedy Attouch
    Alexandre Cabot
    [J]. Applied Mathematics & Optimization, 2019, 80 : 547 - 598
  • [10] An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    [J]. NUMERICAL ALGORITHMS, 2016, 71 (03) : 519 - 540