Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions

被引:3
|
作者
Hedy Attouch
Alexandre Cabot
机构
[1] Université Montpellier,Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS
[2] Université Bourgogne Franche-Comté,Institut de Mathématiques de Bourgogne, UMR 5584 CNRS
来源
关键词
Structured monotone inclusions; Inertial forward–backward algorithms; Cocoercive operators; Relaxation; Convergence rate; Inertial Krasnoselskii–Mann iteration; Nash equilibration; 49M37; 65K05; 65K10; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form Ax+Bx∋0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax + Bx \ni 0$$\end{document} where A:H→2H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}$$\end{document} is a maximally monotone operator and B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:{{\mathcal {H}}}\rightarrow {{\mathcal {H}}}$$\end{document} is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects.
引用
收藏
页码:547 / 598
页数:51
相关论文
共 50 条
  • [1] Convergence of a Relaxed Inertial Forward-Backward Algorithm for Structured Monotone Inclusions
    Attouch, Hedy
    Cabot, Alexandre
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 547 - 598
  • [2] A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs
    Bot, Radu I.
    Sedlmayer, Michael
    Vuong, Phan Tu
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [3] A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions
    Qiaoli Dong
    Dan Jiang
    Prasit Cholamjiak
    Yekini Shehu
    [J]. Journal of Fixed Point Theory and Applications, 2017, 19 : 3097 - 3118
  • [4] An Inertial Forward-Backward Algorithm for Monotone Inclusions
    Lorenz, Dirk A.
    Pock, Thomas
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (02) : 311 - 325
  • [5] An Inertial Forward-Backward Algorithm for Monotone Inclusions
    Dirk A. Lorenz
    Thomas Pock
    [J]. Journal of Mathematical Imaging and Vision, 2015, 51 : 311 - 325
  • [6] A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions
    Dong, Qiaoli
    Jiang, Dan
    Cholamjiak, Prasit
    Shehu, Yekini
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 3097 - 3118
  • [7] Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces
    Shisheng Cui
    Uday Shanbhag
    Mathias Staudigl
    Phan Vuong
    [J]. Computational Optimization and Applications, 2022, 83 : 465 - 524
  • [8] Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces
    Cui, Shisheng
    Shanbhag, Uday
    Staudigl, Mathias
    Vuong, Phan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (02) : 465 - 524
  • [9] Strong convergence of inertial forward-backward methods for solving monotone inclusions
    Tan, Bing
    Cho, Sun Young
    [J]. APPLICABLE ANALYSIS, 2022, 101 (15) : 5386 - 5414
  • [10] Fast Convergence of Generalized Forward-Backward Algorithms for Structured Monotone Inclusions
    Mainge, Paul-Emile
    [J]. JOURNAL OF CONVEX ANALYSIS, 2022, 29 (03) : 893 - 920