Some generalized Riemann-Liouville k-fractional integral inequalities

被引:0
|
作者
Praveen Agarwal
Jessada Tariboon
Sotiris K Ntouyas
机构
[1] Anand International College of Engineering,Department of Mathematics
[2] King Mongkut’s University of Technology North Bangkok,Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science
[3] University of Ioannina,Department of Mathematics
[4] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM)
关键词
integral inequalities; Chebyshev functional; Riemann-Liouville ; -fractional integral operator; Pólya and Szegö type inequalities; 26D10; 26A33; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
The focus of the present study is to prove some new Pólya-Szegö type integral inequalities involving the generalized Riemann-Liouville k-fractional integral operator. These inequalities are used then to establish some fractional integral inequalities of Chebyshev type.
引用
收藏
相关论文
共 50 条
  • [21] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [22] Some Simpson's Riemann-Liouville Fractional Integral Inequalities with Applications to Special Functions
    Nasir, Jamshed
    Qaisar, Shahid
    Butt, Saad Ihsan
    Khan, Khuram Ali
    Mabela, Rostin Matendo
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [23] Some Riemann-Liouville fractional integral inequalities of corrected Euler-Maclaurin-type
    Hezenci, Fatih
    Budak, Hueseyin
    [J]. JOURNAL OF ANALYSIS, 2024, 32 (03): : 1309 - 1330
  • [24] Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings
    Khan, Muhammad Bilal
    Treanta, Savin
    Alrweili, Hleil
    Saeed, Tareq
    Soliman, Mohamed S.
    [J]. AIMS MATHEMATICS, 2022, 7 (08): : 15659 - 15679
  • [25] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [26] SOME NEW INTEGRAL INEQUALITIES VIA RIEMANN-LIOUVILLE INTEGRAL OPERATORS
    Ekinci, Alper
    Ozdemir, M. Emin
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2019, 18 (03) : 288 - 295
  • [27] New Generalized Riemann-Liouville Fractional Integral Versions of Hadamard and Fejer-Hadamard Inequalities
    Nonlaopon, Kamsing
    Farid, Ghulam
    Nosheen, Ammara
    Yussouf, Muhammad
    Bonyah, Ebenezer
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [28] GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    Ion, Daniel Alexandru
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (02): : 207 - 215
  • [29] Montgomery Identity and Ostrowski Type Inequalities for Riemann-Liouville Fractional Integral
    Aljinovic, Andrea Aglic
    [J]. JOURNAL OF MATHEMATICS, 2014, 2014
  • [30] The Minkowski's inequalities via Ω-Riemann-Liouville fractional integral operators
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 893 - 906